Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Motion in Echocardiograms
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Motion Analysis of Echocardiograms Using a Local-Affine, Spatio-Temporal Model

M. Sühling, M. Arigovindan, P. Hunziker, M. Unser

Proceedings of the First IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI'02), Washington DC, USA, July 7-10, 2002, vol. II, pp. 573-576.


We present a new method for estimating heart motion from two-dimensional (2D) echocardiographic sequences. It is inspired by the Lucas-Kanade algorithm for optical flow which estimates motion parameters over a sliding window. However, instead of assuming that the motion is constant within the analysis window, we consider a model that is locally affine and can account for typical heart motions such as dilation/contraction and shear. Another refinement is spatial adaptivity which is achieved by estimating displacement vectors at multiple scales and selecting the most promising fit. The affine parameters are estimated in the least squares sense using a separable spatial (resp., spatio-temporal) B-spline window. This particular choice is motivated by the fact that the B-splines are nearly isotropic (Gaussian-like) and that they satisfy a two-scale equation. We use this latter property to derive a wavelet-like algorithm that leads to a fast computation of B-spline-weighted inner products and moments at dyadic scales, which speeds up our method considerably.

We test the algorithm on synthetic and real ultrasound sequences and show that it compares favorably with other methods, such as Lucas-Kanade and Horn-Schunk.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/suehling0201.html,
AUTHOR="S{\"{u}}hling, M. and Arigovindan, M. and Hunziker, P. and
	Unser, M.",
TITLE="Motion Analysis of Echocardiograms Using a Local-Affine,
	Spatio-Temporal Model",
BOOKTITLE="Proceedings of the First {IEEE} International Symposium on
	Biomedical Imaging: {M}acro to Nano ({ISBI'02})",
YEAR="2002",
editor="",
volume="{II}",
series="",
pages="573--576",
address="Washington DC, USA",
month="July 7-10,",
organization="",
publisher="",
note="")

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved