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Abstract—Based on the theory of approximation, this paper
presents a unified analysis of interpolation and resampling
techniques. An important issue is the choice of adequate basis
functions. We show that, contrary to the common belief, those that
perform best are not interpolating. By opposition to traditional
interpolation, we call their use generalized interpolation; they
involve a prefiltering step when correctly applied. We explain
why the approximation order inherent in any basis function is
important to limit interpolation artifacts. The decomposition the-
orem states that any basis function endowed with approximation
order can be expressed as the convolution of a B-spline of the
same order with another function that has none. This motivates
the use of splines and spline-based functions as a tunable way to
keep artifacts in check without any significant cost penalty. We
discuss implementation and performance issues, and we provide
experimental evidence to support our claims.

Index Terms—Approximation constant, approximation order,
B-splines, Fourier error kernel, maximal order and minimal
support (Moms), piecewise-polynomials.

I. INTRODUCTION

T HE ISSUE of quality is particularly relevant to the med-
ical community; for ethical reasons, it is a prime concern

when manipulating data. Any manipulation should result in the
least amount of distortion or artifacts, so as not to influence the
clinician’s judgment. For practical reasons, efficiency is another
prime concern. Any processing should result in the least compu-
tational effort, particularly when dealing with the large amount
of data involved in volumetric medical imaging. In this paper,
we analyze the tradeoff between the quality and the cost of sev-
eral interpolation methods, and we introduce generalized inter-
polation as a means to overcome the limitations of traditional
interpolation.

Interpolation is at the heart of various medical imaging ap-
plications [1]–[3]. In volumetric imaging, it is often used to
compensate for nonhomogeneous data sampling. This rescaling
operation is desirable to build isometric volumes [4]–[6]. An-
other application of this transform arises in the three-dimen-
sional (3-D) reconstruction of icosahedral viruses [7]. In volume
rendering, it is common to apply by interpolation a texture to the
facets that compose the rendered object [8]. In addition, volume
rendering may also require the computation of gradients, which
is best done by taking the interpolation model into account [9].
In functional magnetic resonance imaging (fMRI), the relative
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amplitude of the difference between two conditions (e.g., active
versus inactive) is very small. Registration is used to align fMRI
images before they are subtracted to reveal where and how they
differ [10]. However, even with perfect knowledge of the ideal
geometric transformation, a deficient interpolation can wash out
these tiny differences.

The essence of interpolation is to represent an arbitrary
continuously defined function as a discrete sum of weighted
and shifted basis functions. An important issue is the adequate
choice of those basis functions. The traditional view asks that
they satisfy the interpolation property, and many researchers
have put a significant effort in optimizing them under this
specific constraint [11]–[17]. Over the years, these efforts have
shown more and more diminishing returns.

Here, instead, we introduce and advocate the use of gener-
alized interpolation, which does away with the constraint of
interpolation at the cost of an additional prefiltering step. The
overall benefit is to allow for the use of a much broader class
of potential basis functions, some of which enjoy, at the same
time, excellent approximation properties and short support. We
present a performance analysis that lies on the firm ground of
approximation theory. We introduce analytical tools that allow
the practitioner to determine the theoretical performance of any
basis function, including noninterpolating ones, and provide an
in-depth analysis of many piecewise-polynomial cases. This
class is important because it contains some families of basis
functions that can be shown to be the best achievable with re-
spect to several criteria, such as maximal regularity (B-splines),
or best least-squares approximation properties (o-Moms). We
show both theoretically and experimentally that generalized
interpolation performs better than traditional interpolation in
the context of image transformations. The resulting quality can
be arbitrarily high; for a given quality, generalized interpolation
comes at a lower computational cost than that incurred by the
traditional methods which satisfy the interpolating constraint.

The organization of this paper is as follows. Section II in-
troduces the notations and we compare traditional interpola-
tion with our proposition for generalized interpolation. In Sec-
tion III, we discuss some desirable aspects of basis functions in
the imaging context. We expose in Section IV the main contri-
bution of this paper, where we apply to interpolation a method-
ology that originates in the theory of approximation. We present
the decomposition theorem and develop tools that are benefi-
cial to its application. In Section V, we analyze several piece-
wise-polynomial basis functions, while we analyze sinc-based
ones in Section VI. In Section VII, we conduct a theoretical
study of the tradeoff between speed and quality; the validity of
this study is confirmed by the experiments that we present in
Section VIII. Finally, we conclude in Section IX.
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II. I NTERPOLATION

A. Scope

We restrict this paper to the case where the discrete data are
regularly sampled on a Cartesian grid. We also restrict the dis-
cussion to exact interpolation, where the continuous model is
required to take the same values as the sampled data at the grid
locations. Finally, we restrict ourselves to linear methods, such
that the sum of two interpolated functions is equal to the inter-
polation of the sum of the two functions.

B. Traditional Interpolation

Let us express an interpolated value at some (perhaps
noninteger) coordinate in a space of dimensionas a linear
combination of samples evaluated at integer coordinates

(1)

The sample weights are given by the values of the function
. To satisfy the requirement of exact interpolation,

we ask that the function vanishes for all integer arguments
except at the origin, where it must take a unit value. A classical
example of the basis function is the sinc function, in which
case all synthesized functions are bandlimited.

C. Generalized Interpolation

As an alternative approach, let us consider the form

(2)

The crucial difference between the classical formulation (1)
and the generalized formulation (2) is the introduction of co-
efficients in place of the sample values . This offers new
possibilities, in the sense that interpolation can now be carried
in two separate steps. Firstly, the determination of coefficients

from the samples , and second, the determination of de-
sired values from the coefficients . The benefit of this
separation is to allow for an extended choice of basis functions,
some with better properties than those available in the restricted
classical case where . The apparent drawback is the
need for an additional step. We will see later that this drawback
is largely compensated by the gain in quality resulting from the
larger selection of basis functions to choose from.

Whether the interpolation is traditional or generalized, we
carry the summations all the way to—and from—infinity. Thus,
it is essential to assign a specific value to those samplesthat
are unknown because they are out of the range of our data. In
the context of generalized interpolation, we will soon see that
any given coefficient is dependent on all sample values,

; for this reason, it is preferable to limit the degree of
arbitrariness when extrapolating data. To reduce boundary ef-
fects, we prefer to avoid the traditional extension which imposes

, , where is the known support of the data; in-
stead, we advocate to perform implicit data mirroring. This latter

solution is preferable because no special value (e.g., 0) is intro-
duced; only already-existing values are used. When compared to
the other traditional extension known as periodization, it offers
the additional advantage that no abrupt transition results on the
data boundaries. Furthermore, the structure of mirror-extended
data is invariant under filtering provided the filter is symmetric,
which yields consistency of design. In the case one-dimensional
(1-D) letting the known range be , the mirror-extended
signal satisfies

Given , , the (eventually multiple) application
of the folding operation just given is sufficient to define ,

. We explain in Appendix-A how this translates to a
practical algorithm for discrete arguments, and we extend this
1-D case to higher dimensions in Section III-B.

D. Determination of the Coefficients

To enforce exact interpolation for integer arguments ,
we write that

(3)

where . Given some function that is knowna
priori , this expression is nothing but a linear system of equa-
tions in terms of the unknown coefficients. We are now faced
with a problem of the form , and a large part of the
literature (e.g., [18]) is devoted to the development of efficient
techniques for inverting the matrix in the context of specific
basis functions . The problem is trivial when is interpolating,
for then is the identity.

Another strategy proceeds by recognizing that (3) is equiva-
lent to the discrete convolution [1]

(4)

It directly follows that the infinite sequence of coefficients
can be obtained by convolution of the infinite sequence
with the convolution-inverse , which is uniquely defined,
and which does generally exist in the cases of interest. Con-
volving both sides of (4) by , we get that

(5)

Since convolution is nothing else but filtering, (5) suggests that
discrete filtering can be an alternative solution to matrix inver-
sion for the determination of the sequence of coefficients
needed to enforce the desirable constraint (3). To derive the
proper algorithm, we start by noting that the basis function
is always symmetric in an imaging context. Thus, we can write
the -transform of as
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where are out of the poles of ; those are nec-
essarily real and come in reciprocal pairs. Thus, the convolution
inverse can be decomposed in a series offilter pairs,
where each pair consists of a causal (with pole) and of an
anticausal (with pole ) IIR filter. With suitable parameters,
we can then apply a very efficient algorithm which leads to a
recursive in-place implementation [19], [20]. Its computational
load for the popular cubic B-spline is two additions and three
multiplications per produced coefficient.

E. Reconciliation

Comparing (1) with (2), it appears that classical interpolation
is a special case of generalized interpolation—with ,

and . The converse is also true. To see why,
we determine the interpolating from its noninterpolating
counterpart by writing

Finally, the interpolating that is hidden behind a noninter-
polating is

(6)

It is crucial to understand that this equivalence allows for the
exact and efficient handling of an infinite-support, interpolating
basis function by performing all operations with a finite-
support, noninterpolating basis function.

III. D ESIRABLE PROPERTIES

A. Generalities

The price to pay for high-quality interpolation is computa-
tion time. For this reason, it is important to select a basis func-
tion that offers the best tradeoff. There are several aspects to
consider. The most important deals with the support of or

, which is a measure of the smallest interval in which we have
that . The larger the support, the more the computation
time. Another important aspect is the quality of approximation
inherent in the basis function. Other aspects involve the ease
of analytical manipulation (when useful), the ease of computa-
tion, and the efficiency of the determination of the coefficients

when is not interpolating.

B. Separability

Consider (1) or (2) in multidimensions, with . Let us
assume that the support of the interpolating or the nonin-
terpolating is of size . This large computational burden can
only be reduced by imposing restrictions on. An easy and con-
venient way is to ask that the basis function be separable, as in

The very beneficial consequence of this restriction is that the
data can be processed in a separable fashion, line-by-line,

column-by-column, and so forth. In particular, the determina-
tion of the interpolation coefficients needed for generalized
interpolation is separable, too, because the form (2) is linear.
For the rest of this paper, we concentrate on separable basis
functions; we describe them and analyze them in one di-
mension, and we use the expression above to implement
interpolation efficiently in a multidimensional context.

C. Symmetry

Preserving spatial relations is a crucial issue for any imaging
system. Since interpolation can be interpreted as a convolution
(or equivalently, filtering) operation, it is important that the re-
sponse of the involved filter does not result in any phase degra-
dation. This consideration translates into the well-known and
desirable property of symmetry such that or

. Symmetry is satisfied by all basis func-
tions considered here, at the possible minor and very localized
exception of nearest-neighbor interpolation.

D. Regularity

Some authors insist that the regularity of the basis function is
an important issue [16]. This may be true when differentiation
of is needed, but differentiating data more than, say, once or
twice, is uncommon in everyday imaging applications. Often,
at most the gradient is needed; thus, it is not really necessary
to limit the choice of basis functions to those that have a high
degree of regularity.

IV. A PPROXIMATION THEORY

A. Error Kernel

Since most clinical data are available once only, at a given
resolution (or sampling step), there exist no absolute truth re-
garding the value of between its samples . It is thus nec-
essary to resort to mathematical analysis for the assessment of
the quality of interpolation. The general principle is to define an
interpolated function as given by a set of samples that are
units apart and that satisfy

with the interpolation constraint that for all
. The difference between and for all

will then describe how fast the interpolated function con-
verges to the true function when the samples that define
become more and more dense, or, in other words, when the sam-
pling step becomes smaller and smaller.

Let us perform the following experiment:

1) Take some arbitrary square-integrable function and
select a sampling step ;

2) Create a set of samples ;
3) From this sequence, using either (1) or (2), build an inter-

polated function ;
4) Compare with using some norm, for example the

mean-square (or ) norm
.
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When the sampling stepgets smaller, more details ofcan
be captured; it is then reasonable to ask that the approximation
error gets smaller, too. The following formula predicts the
approximation error in the Fourier domain [21]–[23]

(7)

where is the Fourier transform of the arbitrary function
, and where is an interpolation error kernel that de-

pends on the basis function only, and that is given by

(8)

The equivalence holds for bandlimited functions.
For those functions that would not belong to that class,
the estimated error must be understood as the average
error over all possible sets of samples , where

is some phase term with .
This applies to dimensions and to interpolating as well
as noninterpolating basis functions [21]–[23]. In the restricting
conditions where , for bandlimited functions and when
the basis function is interpolating, this error kernel reduces
to the kernel proposed in [24].

B. Order of Approximation

A decrease in the sampling stepwill result in a decrease of
the argument of in (7); thus, the error kernel must vanish at
the origin to ensure that the approximation error disappears al-
together. The vanishing rate is controlled by the approximation
order and the constant such that

as

where the parenthesized expression is recognized as being the
norm of the th derivative of the smooth functionwe started
from.

Finally, for a basis function of approximation order, we get
that

as (9)

This result expresses the fact that we can associate to anya
number and a constant such that the error of approx-
imation predicted by decreases like , when is suffi-
ciently small. The number is called the approximation order
of the basis function ; it gives a global estimate of how fast the
approximation error decays when the sampling step gets finer.
The constant allows one to further rank the quality of
those basis functions that would have the same order, where a
smaller corresponds to a better. Nevertheless, it is clear
from (9) that the decay of is dominated by rather than by

as soon as , which frequently happens in the cases
of interest. Thus, it is important to use for ranking basis
functions of identical order only; it would be inappropriate to
consider when comparing with if .

Equations (7) and (8) describe the evolution of the error for
every possible sampling step; thus, the error kernel is
a key element when it comes to the comparison of basis func-
tions, not only near the origin, but over the whole Fourier axis.
The error kernel can be understood as a way to predict the
approximation error when is used to interpolate a sampled
version of the infinite-energy function . Being a
single number, but being also loaded with relevant meaning, the
approximation order is a convenient summary of this whole
curve.

C. Strang–Fix Equivalence

Suppose we are interested in just the approximation order
of a basis function , without caring much about the details of

. In this case, the explicit computation of (8) is not neces-
sary. Instead, Strang–Fix [25] have proposed a series of condi-
tions that are equivalent to (9). The interest of these equivalent
conditions is that they can be readily tested. They are valid for
all basis functions with sufficient decay—the sinc function is
one of the very rare basis where these conditions are not satis-
fied. We mention three equivalent 1-D Strang–Fix conditions as

1) th order zeros in the Fourier domain

2) Reproduction of all monomials of degree

3) Discrete moments

where depends on only.
Under mild hypothesis, any of these conditions is equivalent to

Const . When , or, equivalently,
when , these conditions are called the partition of unity,
or the reproduction of the constant. More generally, the second
Strang–Fix condition implies by linearity that, apart from tech-
nical details, a basis function of ordercan reproduce any poly-
nomial of degree or lower exactly. Thus, the approximation
of data that are smooth at scalewill be close to the original for
two equivalent reasons, since one can either analyze the quality
of the approximation in terms of frequency contents, or in terms
of polynomials. On one hand, there will be few high-frequen-
cies, and the fact that the cardinal basis function may depart
from sinc is mostly irrelevant. On the other hand, the Taylor ex-
pansion of a smoothly varying function is dominated by low-de-
gree terms, and a polynomial of corresponding degree will cap-
ture the local behavior of the function in sufficient details.
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TABLE I
PROPERTIES THATAPPLY TO '(x) = (� � u)(x) $

'̂(!) = (sinc((1=2�)!)) û(!)

D. Decomposition Theorem

1) Theorem: Any uniform piecewise-polynomial basis
function that possesses an order can be expressed
as the convolution of a B-spline of order with a uniform
piecewise-polynomial distribution that has the properties
shown in Table I.

The factorization of as the product of two terms, one of
them being the Fourier transform of a B-spline of order, was
first presented in [25] without proof and without specifying the
properties of the distribution. A rigorous proof of an extended
version of this theorem was later given in [26], in a more math-
ematically abstract and general context than required for this
paper. Our actual formulation is aimed at fitting the present task
and audience; the corresponding proof will appear in a forth-
coming paper [27].

A direct corollary of the decomposition theorem is that the
support of any function of order must satisfy ,
because no distributioncan have a negative support. However,
it may happen that the support ofbe null. In this case, is
necessarily a combination of Dirac pulses and their derivatives,
which calls for an extension to negative values of the concepts
of regularity and of degree: a distributionis said to have regu-
larity with whenever its -times integration yields
a function that has regularity . For example, a discontin-
uous function—say, a rectangular pulse—has regularity, a
Dirac pulse has regularity , the derivative of a Dirac
pulse has regularity , and so on. The concept of degree is
extended similarly.

This theorem is very relevant to the problem of determining
the order of a piecewise-polynomial basis function: its Fourier
transform can necessarily be factored as the product of a
sinc term with a remaining term , where

is the order of the original piecewise-polynomial basis function.
As a simple example, let us consider the B-spline of degree
which we call . Then, we conclude from that

. In turn, the regularity of is , its support
is , and its degree is . Solving for these
last three equations, we rederive the well-known fact that both
the order and the support of a B-spline is one more than
its degree , while it has regularity. Other examples are
given in Appendix-B.

E. Piecewise-Polynomial Analysis

Uniform piecewise-polynomials form an important class of
all possible basis functions. In particular, we shall see later that
the basis functions that are optimal in a precise mathematical

sense are all members of this class. For this reason, we feel im-
portant to develop analytical tools that ease their Fourier anal-
ysis. Let be a polynomial piece

(10)

where
index of the piece;
overall highest polynomial degree;
polynomial coefficients.

By convention, the piece described byis valid on the interval
; in the following analysis we assume that

. The special behavior on the boundaries is such as to allow
for basis functions that are pointwise symmetric, including ones
with discontinuities (the boundaries are shared by two adjacent
pieces).

We now decompose this piecewise-polynomial into elemen-
tary functions for which an expression for the Fourier transform
is known. Let us first introduce the one-sided power function

as being given by

.

(11)

Although is not a finite-energy function, we can nevertheless
express its Fourier transform as

where is the th derivative of the Dirac distribution. Using
this basic building block, we now express the truncated power
function as being given by

This function satisfies for and
for . The boundaries are such that

, including at the particular argument . The Fourier
transform of this finite-energy function is

where is the incomplete -function given by the
finite sum
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Finally, we rewrite each polynomial piece in terms of truncated
power functions. For this, we build a new set of polynomial
coefficients as

Then, we observe that

(12)

where is the number of polynomial pieces, and whereis a
truncated polynomial given by

By contrast with (10), the important property of (12) is that both
support membership and special treatment of the piece bound-
aries are now implicit. Letting be the -periodic contin-
uous Fourier transform of the discrete sequence of coefficients

we can finally express the Fourier transform of the piecewise-
polynomial as

F. Example

The analysis above facilitates the calculation of the error
kernel (8) for many basis functions, because the latter are often
piecewise-polynomials themselves. Moreover, it allows for an
easy determination of the order. For illustration purposes,
we propose to analyze the quadratic Schaum basis function
(results for many more cases are available in Appendix-B). Let
this function be given by

which can be summarized by

with

and

From that, we build

and

which results in

From its explicit expression, we see that the quadratic Schaum
basis function has the support and the degree .
Referring to the decomposition theorem, we determine from the
expression of its Fourier transform that its order is ; thus,
the polynomial resulting from factoring out a B-spline must
have the support . It is made of the sum of a Dirac
with unit weight (which corresponds to 1 in the Fourier domain),
and of a second derivative of a Dirac with weight [which
corresponds to in the Fourier domain]. Thus, in
short notation we can write that . Also, the
degree of is and it has regularity,
which implies that has regularity. This can be checked
by inspection of the explicit expression of the quadratic Schaum
basis function.

After some tedious algebra (which can be handled by most
current symbolic manipulation software), the introduction of the
expression above into (8) yields

Taking the order into consideration, the corresponding
approximation constant of a quadratic Schaum basis function is
finally given by

V. SPECIFICPIECEWISEPOLYNOMINAL EXAMPLES

A. Nearest-Neighbor

The basis function associated to nearest-neighbor interpola-
tion is the simplest of all, since it is made of a square pulse. It
satisfies the partition of unity, provided a slight asymmetry is in-
troduced at the edges of the square pulse. Its expression is given
by

.
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The main interest of this basis function is its simplicity, which
results in the most efficient of all implementations. In fact, for
any coordinate where it is desired to compute the value of
the interpolated function , there is only one sample that
contributes, no matter how many dimensionsare involved. The
price to pay is a severe loss of quality.

B. B-Splines

There is a whole family of basis functions made of B-splines
. These functions are given by [28]

where is the one-sided power function defined in (11).
From Table I, it is easy to conclude that these B-spline functions
enjoy the maximal order of approximation for a given support;
conversely, they enjoy the minimal support for a given order
of approximation. In addition, they are maximally continuous.
They have many other interesting properties as well [28], [29];
most fall outside the scope of this paper, except perhaps the fact
that a B-spline derivative can be computed recursively by

Then, computing the exact gradient of a signal given by a dis-
crete sequence of interpolation coefficients can be done as
follows:

where the -times continuous differentiability of B-splines en-
sures that the resulting function is smooth when , contin-
uous when , and bounded when .

• Degree : The B-spline of smallest degree
is almost identical to the nearest-neighbor basis function.
They differ from one another only at the transition values,
where we ask that be symmetric with respect to the
origin ( is not), and at the same time that it satisfies the
partition of unity. Thus, contrary to the nearest-neighbor
case, it happens in some exceptional cases (evaluation at
half-integers) that interpolation with requires the com-
putation of the average between two samples.

• Degree : The B-spline function is also called
linear interpolation. It enjoys a large popularity because
the complexity of its implementation is very low, just
above that of the nearest-neighbor; moreover, some
consider that it satisfies Occam’s razor principle by being
the simplest interpolating basis functionone can think
of that builds a continuous function out of a sequence of
discrete samples .

• Degrees : No B-spline of degree bene-
fits from the property of being interpolating; thus, no such

(a)

(b)

Fig. 1. B-spline of third degree. (a) Function shape. (b) Equivalent interpolant.

high-degree B-spline should ever be used in the context of
Equation (1). Equation (2) must be used instead. Unfortu-
nately, some authors have failed to observe this rule, which
led them to claim that B-splines typically blur data. There-
fore, such claims are misleading, even though they can
be repeatedly found in the published literature. A cubic
B-spline is often used in practice. Its expression is given
by

.

This basis function is not interpolating. As explained in Equa-
tion (6), it is nonetheless possible to exhibit an infinite-support
basis function that allows one to build exactly
the same interpolated function. To give a concrete illustration
of this fact, we show in Fig. 1 both the noninterpolating cubic
B-spline along with its interpolating equivalent basis func-
tion. The latter is named a cubic cardinal spline . Graph-
ically, the B-spline looks similar to a Gaussian; this is not by
chance, since a B-spline can be shown to converge to a Gaussian
when its degree increases. Already for a degree as small as

, the match is amazingly close since the maximal relative
error between a cubic B-spline and a Gaussian with identical
variance is only about 3.5%.

On the bottom part of Fig. 1, the cardinal spline displays de-
caying oscillations that are reminiscent of a sinc function. This
is not by chance either, since a cardinal spline can be shown to
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Fig. 2. B-spline basis functions. Approximation kernel for several degrees.

converge to a sinc function when its degree increases [30], [31].
Throughout the paper, we have given numerous reasons why it
is more profitable to approximate a true sinc by the use of non-
interpolating basis functions rather than by apodization. Even
for moderate degrees, the spline-based approximations offers a
sensible quality improvement over apodization for a given com-
putational budget. In Fig. 2, we give the approximation kernel
defined in (8) for B-splines of several degrees.

C. o-Moms

The family of functions that enjoy Maximal Order and Min-
imal Support is called Moms (or splines of minimal support in
the terminology of [26]). It can be shown that any of these func-
tions can be expressed as the weighted sum of a B-spline and its
derivatives [26], [32], such that the distributionof the decom-
position theorem has a vanishing support

Moms

B-splines are those Moms functions that are maximally differen-
tiable. There exist several other interesting classes in this family;
in particular, the o-Moms functions [32] are such that their least-
squares approximation constant is minimal. This constant
is closely related to , because we can write that

while we have that

The constant corresponds to the least-squares error kernel
given by

After substitution of by in (7), one is left with an
approximation error that corresponds to the least-squares pro-
jection of a signal onto the set of shifted basis functions.
This error is the smallest achievable in a quadratic sense, and
requires that the set of discrete constraints expressed in (3) be re-
placed by a continuous constraint [33]. While it is also possible
to find Moms functions such that their asymptotic approxima-
tion constant reaches its absolute minimum, experiments
have shown that these particular functions are in fact less favor-
able for interpolation than are o-Moms.

The o-Moms functions are indexed by their polynomial de-
gree and they are symmetric. Their knots are identical to those
of the B-spline they descend from. Moreover, they have the same
support as , that is, ; this support is the smallest achiev-
able for an approximation order . Although their order is
identical to that of a B-spline of same degree, their approxima-
tion error constant is much smaller. By construction, their
approximation error constant is the smallest possible.

These functions are not interpolating; thus, they need a way to
compute the sequence of coefficients required for the im-
plementation of (2). Fortunately, the same algorithm than for the
B-splines can be used. The o-Moms functions of degree zero and
one are identical to and , respectively. The o-Moms func-
tions of higher degree can be determined recursively in Fourier
[32]; we give here the expression for

o-Moms

.
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(a)

(b)

Fig. 3. o-Moms of third degree. (a) Function shape. (b) Equivalent interpolant.

As a curiosity, we point out in Figs. 3 and 4 that this basis func-
tion has a slope discontinuity at the origin; thus, its regularity
is (in addition, it has other slope discontinuities for
and ). It is nevertheless optimal in the sense described.

D. Schaum

Like the o-Moms, the pseudo-Lagrangian basis functions pro-
posed by Schaum can also be represented as a weighted sum of
B-splines and of their even-order derivatives [17]. They have
same order and same support as B-splines and o-Moms. Their
main interest is that they are interpolating. Their disadvantage
with respect to both o-Moms and B-splines is a worse approx-
imation constant : for example, considering an approxima-
tion order , the value reached by a cubic o-Moms is

; the constant for the cubic spline is more than
twice with , while the cubic Schaum loses an
additional order of magnitude with . They are
discontinuous for even degrees, and arefor odd degrees.

E. Dodgson

Dodgson has proposed a basis function built out of quadratic
polynomials [12]. Unfortunately, it fails to be a member of the
family of Moms. While it has a support , its approxima-
tion order is , which is no higher than in the linear inter-
polation case that has the smaller support . In return, its
constant of approximation is about five times smaller than
in the linear case.

F. Keys

The principal reason for the popularity enjoyed by the family
of Keys functions is the fact that they perform better than linear
interpolation, while being interpolating [15]. Thus, they do not
require the determination of interpolation coefficients, and the
classical equation (1) can be used. These functions are made
of piecewise cubic polynomials and depend on a parameter.
Their general expression is

.

Comparing this expression with that of the cubic spline, it is ap-
parent that both require the computation of piecewise-polyno-
mials of the same support. However, their approximation order
differ: the best order that can be reached by a Keys function is

, for the special value , while the cubic spline
has order . This extra order for comes at the cost of
the computation of a sequence , for use in (2). However, by
using a recursive filtering approach, this cost can be made neg-
ligible. Altogether, the gain in speed offered by Keys function
is not enough to counterbalance the loss in quality when com-
paring with . Moreover, the regularity of Keys is ,
which is one less than that of the cubic spline.

G. Meijering

Meijering et al. [16] have designed piecewise-polynomial
basis functions that all have the same approximation order

and that are interpolating. What is distinguished between
them are their support and their polynomial degree. The
benefit of higher values for these characteristics is to allow for
a stronger regularity ; also, the constant of approximation

gets smaller. With regard to approximation properties
nevertheless, and even with a support as large as , the
Meijering basis function of degree is no better than an
o-Moms function of the much smaller support and
much smaller degree .

We give in Fig. 5 the error kernel of several basis functions
that all have the identical order of approximation . The
corresponding basis functions have a wide range of polynomial
degree (from up to ). They also have a wide range
of support (from up to ), which translates into
some very large differences with respect to computational re-
quirements. Nevertheless, the approximation quality is essen-
tially the same for all these kernels (compare to the broader se-
lection of performances to choose from in Fig. 2). One possible
selection criterion is the constant of approximation ; we give
it in Table II.

H. German

German [13] has proposed an interpolating basis function
with an approximation order . Its support is larger than
necessary, which leaves some freedom to the designer. In this
case, this freedom has been used to increase the regularity to

. Note that the quartic B-spline enjoys the same order



748 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 7, JULY 2000

Fig. 4. o-Moms of third degree (central part).

Fig. 5. Various basis functions of same approximation orderL = 3. A sextic B-spline of degreen = 6 and orderL = 7 has been added for comparison, because
it offers much better performance than any of the third-order basis functions, while it has essentially the same experimental computational cost as one of them
(septimic Meijering).

TABLE II
CONSTANT OFAPPROXIMATIONS FORVARIOUS BASIC FUNCTIONS WITHL = 3

for a shorter support, while it has the maximal regularity.
Moreover, its approximation is much better than that of German,
since we have that
for the fifth-order German basis function, and that

for the quartic B-spline.

VI. SINC-BASED BASIS FUNCTIONS

A. Bandlimitedness

For a long time, sinc interpolation—which corresponds to
ideal filtering—has been the holy grail of geometric operations.
Nowadays, researchers acknowledge that, while interpolation
can be realized under special circumstances (e.g., translation of
a periodic signal through discrete Fourier transform operations),
in general, it can only be approximated. Another drawback of
the function is that it decays only slowly, which tends to spread
out ringing-associated effects.

The sinc function provides error-free interpolation of the ban-
dlimited functions. There are two difficulties associated with
this statement. The first one is that the class of bandlimited
functions represents but a tiny fraction of all possible functions;
moreover, they often give a distorted view of the physical re-
ality in an imaging context—think of the transition air/matter in
a CT scan: as far as classical physics is concerned, this transi-
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tion is abrupt and cannot be expressed as a bandlimited function.
Further, there exist obviously no way at all to perform any kind
of antialiasing filter on physical matter (before sampling). Most
patients would certainly object to any attempt of the sort.

The second difficulty is that the support of the sinc function is
infinite. An infinite support is not too bothering, provided an ef-
ficient algorithm can be found to implement interpolation with
another equivalent basis function that has a finite support. This
is exactly the trick we used with B-splines and o-Moms. Unfor-
tunately, no function can be at the same time bandlimited and
finite-support, which precludes any hope to find an equivalent
finite-support basis function for use in (6). Thus, the classical
solution is simply to truncate sinc itself by multiplying it with
a finite-support window; this process is named apodization. A
large catalog of apodizing windows is available in [14], along
with their detailed analysis.

B. Dirichlet Apodization

Dirichlet apodization is perhaps the laziest approach, since
the window of total width is simply an enlarged version of

, which requires no more computational effort than a test to
indicate support membership. The apodized basis function is
given by

sinc

where is an even integer. The price to pay for laziness is bad
quality. First, the regularity of this function is low since it is not
differentiable. More important, its approximation order is as bad
as . This means that a reduction of the sampling step does
not necessarily result in a reduction of the interpolation error.

C. Hanning Apodization

Apodization, being defined as the multiplication of a sinc
function by some window, corresponds in Fourier to a convo-
lution-based construction. The Hanning window is one out of
several attempts to design a window that has favorable proper-
ties in Fourier. The result is

sinc sinc

With , the order of approximation of Hanning interpola-
tion is no better than that of Dirichlet interpolation; the con-
stant is significantly improved, though. Whereas it was

for sinc , it is now for sinc .
Being continuously differentiable, Hanning is also more regular
than Dirichlet.

VII. COST-PERFORMANCEANALYSIS

A. Generalities

The single most influential parameter that dictates the com-
putational cost is the size of the support of the basis function

. Second to it, we find the cost of evaluating for a se-
ries of arguments . Last, there is a small additional cost
associated to the computation of interpolation coefficients

in the context of (2). We want to mention here that the impor-
tance of this overhead is negligible, especially in the practical
case where it needs to be computed once only before several in-
terpolation operations are performed. This situation arises often
in the context of iterative algorithms, and in the context of in-
teractive imaging; moreover, it disappears altogether when the
images are stored directly as a set of coefficients rather
than a set of samples . Thus, we will ignore this overhead
in the theoretical performance analysis that follows.

B. Cost

Let us assume that we want to compute the interpolated value
of a 2-D image at argument , using a separable basis

function of finite-support . For each output value, we first
need to perform multiplications and additions to compute

. This computation is embedded in
a similar outer loop that is also executed times. Finally, we
need multiplications and additions in 2-D; more generally,
we need operations in dimensions, where we consider
that a multiplication is worth an addition.

To this cost, one must add -times the cost of the evalu-
ation of the separable basis function. When the latter is piece-
wise-polynomial, on average we need tests to determine
which of the polynomial piece to use. Once a polynomial is se-
lected, evaluation by the Horner’s scheme further requires

multiplications and additions under the favorable hypothesis
that . Putting these results together, the magnitude
of the global cost of all operations for a piecewise-polynomial
basis function is , more precisely

.
In the case of the sinc family, each evaluation requires the

computation of a transcendental function and the multiplication
by the apodization window. This cost does not depend on the
support . Hence, the magnitude of the global cost of all op-
erations for an apodized sinc basis function is ; more
precisely, where operations are spent in
the evaluation of a Hanning apodization window (we consider
that the transcendental functions sine or cosine are worth two
multiplications each), for a Bartlet window and in
the Dirichlet case.

It follows from these theoretical considerations that the sup-
port for which a sinc-based basis function comes at a lesser com-
putational cost than a polynomial-based one, is about
in two dimensions. For images or volumes, where , it is
important to realize that this result does not imply that the use
of sinc functions is more efficient than that of polynomials, be-
cause sinc typically requires a much larger support than poly-
nomials to reach the same quality.

C. Performance

In Fig. 6, we present a comparison of the error kernel for
several basis functions of same support . It includes
cubic B-spline, cubic o-Moms, and cubic Schaum as examples
of polynomial functions, and Dirichlet and Hanning as examples
of apodized sinc. We observe that the sinc-based basis functions
do not reproduce the constant. Since most of the energy of vir-
tually any image is concentrated at low frequencies, it is easy to
predict that these functions will perform poorly when compared
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Fig. 6. Comparison of basis functions of same supportW = 4.

TABLE III
PERFORMANCEINDEX FOR WHITE NOISE

to polynomial-based basis functions. We will see in the experi-
mental section that this prediction is fulfilled; for now, we limit
our analysis to that of the more promising polynomial cases.

On the grounds of (7), we can select a specific functionto
sample-and-interpolate, and we can predict the amount of re-
sulting squared interpolation error. As a convenient simplifica-
tion, we now assume that this functionhas a constant-value
power spectrum; in this case, it is trivial to obtain the interpola-
tion error by integrating the curves in Fig. 6. Table III gives the
resulting values as a signal-to-noise ratio (SNR) expressed in
dB, where the integration has been performed numerically over
the domain , and where we have set the natural
sampling interval . These results have been obtained by
giving the same weight to all frequencies up to Nyquist’s rate;
if low frequencies are considered more important than high fre-
quencies, then the order of approximationand its associated
constant are the most representative quality indexes.

D. Tradeoff

Fig. 7 presents the combination of the theoretical results of
computation time and of those of interpolation quality. In order
to show the versatility of the approximation kernel, we have
changed the function from bandlimited white noise
(Table III) to a function that corresponds to a Markov model
which captures the correlation of data such that

. Thus, we have that

With , this power spectrum is representative of a large
variety of real images [34]. We have performed its integration
against the approximation error kernel over the domain

only, such as to conform to bandlimitedness.

VIII. E XPERIMENTS

A. Protocol

To magnify the degradation that results from interpolation,
we adopt the following strategy that has for goal the highlighting
of—as opposed to the avoidance of—the deleterious effects of
interpolation: we apply a succession of rotations of

each to some image, such that the output of any
given step is used as input for the next step. We then compare
the initial image to the final output. To limit potential boundary
effects, we perform the final comparison on some central por-
tion of the image only. Also, we avoid any interaction between
interpolation and quantization by performing all computations
in a floating-point format. Fig. 8 shows the central portion of
the image we want to rotate.

B. Nearest-Neighbor and Linear Interpolation

Since the circular pattern of Fig. 8 is characterized by a radial
sinusoidal chirp with higher frequencies in the center than in the
periphery, the effect of the interpolation-associated filtering can
be read visually as increases or—more often—decreases in the
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Fig. 7. Theoretical performance index for a Markov-like power spectrum. Triangles correspond to interpolating basis functions, circles to noninterpolating ones.

(a) (b) (c)

Fig. 8. Central portion of test images. (a) CT scan. (b) Lena. (c) Synthetic circular pattern.

(a) (b)

Fig. 9. Rotation of a circular pattern. (a) Nearest-neighbor. (b) Linear
interpolation.

degree of modulation of those spatial frequencies. Fig. 9 shows
the effect of the rotation experiment when using the two most
commonly found interpolants. Nearest-neighbor interpolation
results in a lot of data shuffling, and the image is highly clut-
tered. Linear interpolation results in the loss of high frequencies,
which corresponds to strong blurring. These losses cannot be
compensated; they correspond to the prediction made in Fig. 2,

(a) (b)

Fig. 10. Difference between the original and the several-times rotated image
of a CT scan. Positive values are light and negative values are dark. A zero
difference is represented by middle gray. (a) Nearest-neighbor interpolation. (b)
Linear interpolation.

according to which linear interpolation (equivalently,) per-
forms poorly when compared to other cases. Fig. 10 shows the
differential effect of the rotation experiment on the CT scan. In
this case, we represent error images—the result of subtracting
the rotated image from the original one. We observe that the
data shuffling aspect of nearest-neighbor interpolation results
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(a) (b) (c)

Fig. 11. Rotation of a circular pattern. (a) Keys. (b) Cubic spline. (c) Cubic o-Moms.

(a) (b) (c)

Fig. 12. Difference image for the CT scan. (a) Keys. (b) Cubic spline. (c) Cubic o-Moms.

(a) (b) (c)

Fig. 13. Rotation of a circular pattern. (a) Dirichlet(W = 4). (b) Hanning(W = 4). (c) Sextic spline (W = 7, less computation time than Hanning with
W = 4).

in widespread noise, while the low-pass aspect of linear inter-
polation results in artifacts mostly near edges.

C. Cubic Interpolation

Figs. 11 and 12 propose three basis functions of identical sup-
port which have essentially the same computational cost. On the
left, despite the use of the optimal parameter , Keys
offers the poorest visual performance since the central part of the
figure is blurred. In addition, close inspection (particularly on a
monitor screen) discloses blocking artifacts that betray them-
selves as moiré patterns. Those are absent with cubic spline and
cubic o-Moms interpolation, although patterns unrelated to in-
terpolation may eventually be present on paper, in reason of the

dithering process inherent in printing these figures. More impor-
tant, cubic spline interpolation results in less blurring, and cubic
o-Moms in even less. Fig. 11 shows the resulting image for the
circular pattern, while Fig. 12 shows the difference image for
the CT scan.

D. Sinc-Based Interpolation

Fig. 13(a) and (b) shows the result of using two different trun-
cated and apodized approximations of sinc, where the support is
the same as in the functions of Figs. 11 and 12. The test images
of Fig. 8 have a nonnull average; since an apodized version of
sinc does not reproduce this constant value faithfully, each in-
cremental rotation results in the drift of the average value of the
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TABLE IV
RESULTS IN NUMERICAL FORM

image. This drift manifests itself as images that appear too dark
(negative drift) or too light (positive drift). We conclude that
sinc performs extremely poorly when compared to other basis
functions of the same support, and not only drift of the mean
value, but also both blocking and excessive blurring artifacts are
present.

Even though the support of the sinc-based basis functions pre-
sented in Fig. 13 is short, the associated computation time is al-
ready substantial. Fig. 13(c) shows that much higher quality can
be achieved in less time with a more efficient, noninterpolating
basis function (here, sextic B-spline). Fig. 13(c) is visually in-
distinguishable from Fig. 8(c).

E. Discussion

Table IV presents in succinct form the numeric results of these
experiments, along with some additional ones. In particular, we
also provide the results for the standard Lena test image, and for
the synthetic circular test pattern of Fig. 8. The execution time
is given in seconds and corresponds to the duration of a single
rotation of a square image 512 pixels on a side. The computer
is a Power Macintosh 9600/350 and the measure of the SNR is
defined as

SNR
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Fig. 14. Summary of the main experimental results for the CT scan. Triangles correspond to interpolating basis functions, circles to noninterpolating ones. The
hollow circles give the computational time for an accelerated implementation.

where is the original (nonnull average) data, and whereis
given by the -times chaining of the rotation.

These results point out some of the difficulties associated
with the analysis of the performance of a basis function. For
example, the computation time should ideally depend on the
number of mathematical operations only. In reality, the opti-
mization effort put into implementing each variation with one
basis function or another, has also some influence. For instance,
we have a fast implementation of the cubic spline and of the
cubic o-Moms (in italic in Table IV and in white circles in
Fig. 14) that runs in shorter time than the normal implemen-
tation (in bold in Table IV and in black circles in Fig. 14). We
have, nevertheless, shown the result of all implementations be-
cause this corresponds to a somewhat unified level of optimiza-
tion. The time spent for the determination of the interpolation
coefficients—with a filtering algorithm implemented according
to Section II-D—is included in the reported results.

We have provided results for two classes of sinc functions.
The class labeled (-) represents traditional apodization, while
the class labeled (+) represents an apodized-normalized version.
In the latter case, we have modified the basis function as

sinc

where is the original apodization window. The purpose of this
operation is to restore some better approximation order to the
sinc-based cases, at the cost of additional processing. As can be
seen in Table IV, this is successful only for large supports and
incurs an unbearably long computation time. Meanwhile, the
resulting quality is obviously suboptimal when compared to the
much better piecewise-polynomial cases.

Fig. 14 proposes a graphic summary of the most relevant re-
sults (CT scan, quality better than 20 dB, execution time shorter
than 2 s). It is interesting to compare this figure with Fig. 7; the

similarity between them confirms that our theoretical ranking of
basis functions was justified. The difference between the inter-
polation methods is more pronounced in the experimental case
because it has been magnified by the number of rotations per-
formed.

IX. CONCLUSION

We have analyzed two approaches to the exact interpolation
of data given by regular samples. In classical interpolation, the
basis functions must be interpolating, while noninterpolating
basis functions are allowed in generalized interpolation. We
have tried to dispel the too-commonly held belief according to
which noninterpolating functions (typically, cubic B-splines)
should be avoided. This misconception, present in many books
or reports on interpolation, arose because practitioners have
sometimes attempted to use noninterpolating basis functions
without the prefiltering step that is required to achieve a consis-
tent implementation of the generalized interpolation. We have
provided a unified framework for the theoretical analysis of the
performance of both methods. We have applied this analysis
to specific cases that involve piecewise-polynomial functions
as well as sinc-based interpolants. We have performed 2-D
experiments that support the 1-D theory.

We conclude from both theoretical and practical concerns
that the most important index of quality is the approximation
order of the basis function, its support being the most important
parameter with respect to efficiency. Thus, the class of Moms
functions, stands apart as the best achievable compromise
between quality and speed. We have observed that many
formerly proposed basis functions, such as Dodgson, Keys,
Meijering, German, and any of the apodized versions of a sinc,
do not belong to this class. Experiments have confirmed that
these basis functions do indeed perform poorly. In particular,
no sinc-based interpolation results in an acceptable quality
with regard to its computational demand. In addition, they are
difficult to handle analytically, which leads to unnecessary
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complications for simple operations such as differentiation or
integration.

The more favorable class of Moms functions can be further
divided into subclasses, the most relevant being B-splines,
Schaum, and o-Moms. Of those three, the Schaum functions
are the only representatives that are interpolating. Nevertheless,
experiments have shown that this strong constraint is detri-
mental to the performance; we observe that the time spent in
computing the interpolation coefficients required by B-splines
and o-Moms is a small, almost negligible investment that offers
a high payoff in terms of quality. For this reason, we discourage
the use of Schaum and advocate generalized interpolation
instead, with noninterpolating basis functions such as B-splines
and o-Moms.

Finally, comparing B-splines with o-Moms, we conclude that
the lack of regularity of the latter makes them less suitable than
B-splines for imaging problems that require the computation
of derivatives, for example to perform operations such as edge
detection or image-based optimization (e.g., snake contouring,
registration). These operations are very common in medical
imaging. Thus, despite a poorer objective result than o-Moms,
B-splines are very good candidates for the construction of an
image model. Moreover, they enjoy additional properties such
as easy analytical manipulation, several recursion relations, the

-scale relation (of great importance for wavelets, a domain
that has strong links with interpolation [29], [35]), minimal
curvature for cubic B-splines, easy extension to inexact in-
terpolation (smoothing splines, least-squares [33]), simplicity
of their parametrization (a single number—their degree—is
enough to describe them), and possible generalization to
irregular sampling.

APPENDIX I

A. Mirror Extension

We want to extend a finite, discrete signal
of length into an infinite-length, discrete signal by using a
mirror extension. To obtain an explicit sample value for any ar-
gument , we write , where

and where

.

B. Piecewise-Polynomial Basis

We give here a technical summary of the principal character-
istics of some uniform piecewise-polynomial basis functions.1

We draw the attention of the reader on the following facts:

• the higher the approximation order, the better the quality;
• for basis functions of identical approximation order, the

smaller the approximation constant, the better the quality.

1Only those error kernels that have an expression with a manageable size are
reported.

It is, however, meaningless to compare approximation
constants associated to basis functions that would differ
in approximation order;

• the smaller the support, the less the computational burden;
• never use a noninterpolating basis function in the context

of (1). Use (2) instead, and determine the interpolation
coefficients as explained in Section II-D.

1) First-Order B-spline (Symmetric Nearest-Neighbor):

Piecewise-polynomial representation
, .

Degree , regularity , support , approxi-
mation constant .
Order , interpolating, decomposition .
Error kernel

2) Second-Order B-spline (Linear):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , interpolating, decomposition .
Error kernel

3) Second-Order Dodgson (Quadratic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , interpolating.
Decomposition

Error kernel
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4) Third-Order Schaum (Quadratic):

Piecewise-polynomial representation

Degree , regularity , support , approxi-
mation constant .
Order , interpolating, decomposition

.
Error kernel

5) Third-Order Keys (Cubic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , interpolating.
Decomposition

Error kernel

6) Third-Order Meijering (Quintic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , interpolating.
Decomposition (see (A-1) at the bottom of the page).

7) Third-Order B-spline (Quadratic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , noninterpolating, decomposition .
Error kernel

8) Third-Order Meijering(Septimic):

Piecewise-polynomial representation (see (A-2) at the
bottom of the next page).
Degree , regularity , support , approxima-
tion constant .
Order , interpolating.
Decomposition (see (A-3) at the bottom of the next page).

9) Third-Order o-Moms (Quadratic):

Piecewise-polynomial representation

Degree , regularity , support , approxi-
mation constant .
Order , noninterpolating, decomposition

.
Error kernel

(A-1)
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10) Fourth-Order Schaum (Cubic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , interpolating, decomposition

.
Error kernel

11) Fourth-Order B-spline (Cubic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , noninterpolating, decomposition .
Error kernel

12) Fourth-Order o-Moms (Cubic):

Piecewise-polynomial representation

Degree , regularity , support , approxima-
tion constant .
Order , noninterpolating, decomposition

.
Error kernel

13) Fifth-Order German (Quartic):

Piecewise-polynomial representation

(A-2)

(A-3)
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Degree , regularity , support , approxima-
tion constant .
Order , interpolating.
Decomposition
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