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ABSTRACT

We address the task of rendering by ray tracing the isosurface of
a high-quality continuous spline model of volumetric discrete and
regular data. By expressing the spline model as a sum of non-
negative B-splines, we are able to confine the potential location of
the isosurface within a thin binary shell. We then show how to use
the space-embedding property of splines to further shrink this shell
to essentially a single-voxel width. We also propose a new illumi-
nation model that highlights the outline of the rendered isosurface,
which provides for a sensitive test of the perceived quality of the
rendering. We present experiments to support our claims, along
with an efficient algorithm to compute simultaneously an array of
B-splines and of its derivatives.

1. INTRODUCTION

We consider the problem of rendering data given by a 3D regu-
lar array of measurements f(k), k ∈ Z

3. An early solution
called marching cubes [1] has attracted some interest by propos-
ing a heuristic to perform the conversion of the volumetric data
f(k) into a list of polygonal faces. Unfortunately, this conversion
is ambiguous in some cases [2]; moreover, the number of faces
may grow very large which may become a hindrance to the ren-
dering speed. In addition, the planarity of the faces stands in con-
tradiction with the smooth, organic surfaces that one expects from
biomedical volumes, a common source of volumetric datasets.

Another method called volumetric rendering considers the sim-
ulated propagation of rays in volumes of varying opacities [3].
While it lends itself well to photorealism, including lense effects
and antialiasing [4], its computational requirements are very high.
It is only by using custom [5] or massively parallel [6] hardware
that reasonable rendering times can be achieved. Moreover, the
prescription of an adequate volume of opacities proves to be a del-
icate issue; furthermore, the volume rendering integral must be
discretized in practice, which introduces yet another set of diffi-
culties [7].

We prefer to render an isosurface, which is uniquely defined
by the frontier of the solid that satisfies f < f0, where f0 is
some arbitrary threshold. Modern methods [8, 9] rely on fitting
the discrete data f(k) with a continuous model f(x), and then
on rendering—by a technique such as ray tracing—the continu-
ous surface defined by the frontier of f(x) < f0. Rendering an
isosurface is intrinsically faster than rendering a volume of opac-
ities, because one must evaluate an illumination model once only,
as opposed to many times for volumetric rendering.

The continuous model f(x) is related to the discrete data f(k)
by f(x) =

∑
f(k) ϕint(x − k). In recent years, a lot of atten-

tion has been devoted to investigate which specific interpolating
continuous function ϕint would result in the best performance for

visualization [10, 11, 12, 13]. In this paper, we deduce from a list
of basic requirements that a very reasonable basis function in the
context of isosurface rendering is the quadratic B-spline.

Unlike the basis ϕint used in most previous visualization works,
the quadratic B-spline ϕ = β2 is not interpolating. We do still re-
produce the data exactly by adopting the following interpolation
model:

f(x) =
∑
k∈Z3

ck ϕ(x − k),

where the spline coefficients ck are obtained from the data samples
f(k) by a recursive digital filtering method [14, 15]. This filtering
step is performed once only, as preprocessing.

A number of approaches exist to reduce the computational cost
of finding an isosurface [16, 17, 18]. In this paper, we take advan-
tage of numerous properties of B-splines to derive a scheme where
we are able to tell apart those voxels that enclose the isosurface
from those that are more remote. In the context of ray tracing,
this results in a large speed-up since it is necessary to evaluate the
model f(x) only in the near vicinity of the isosurface. This ad-
vantage is not available to interpolating bases ϕint because they
oscillate, and their whole support must be considered instead.

2. FIRST PRINCIPLES

The order of approximation L is a direct index of the quality of a
basis function ϕ. One of several interpretations of L expresses that
any polynomial of degree up to (L−1) can be represented exactly
as a weighted sum of shifted basis functions a0 +

∑
an xn =∑

ck ϕ(x− k). To understand why this is important, it is enough
to remember that the reminder of a Taylor series gets smaller the
more terms are considered. Thus, we ask that

• The order of approximation of ϕ must be large.

The support W of ϕ has immediate implications on the computa-
tional cost of estimating the continuous model f(x). Thus, we ask
that

• The support of ϕ must be short.

The ray-tracing technique requires the knowledge of a normal to
the isosurface. If we model locally the continuous model f(x) as
the truncated Taylor series f(x + ∆x) = f(x) + 〈∆x, ∇f(x)〉,
then the isosurface condition f(x + ∆x) = f(x) = f0 implies
that 〈∆x, ∇f(x)〉 = 0, which expresses that the normal is indeed
parallel to the gradient of the data since ∇f(x) is perpendicular to
every vector ∆x that belongs to the isosurface. Thus, we ask that

• ϕ must be continuously differentiable.

Only one family of functions maximizes L while minimizing W ;
its members are called MOMS [19]. Within this family, the shortest-
support function that is continuously differentiable is unique; it is
the quadratic spline.
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3. RAY TRACING

Ray tracing is a rendering method that has evolved over the years
into many variants. In its basic form, rays go through a virtual pin-
hole camera consisting of an eye E and of a projection plane. On
one side of the eye, the rays intersect the image under construction
(the projection plane); one pixel is painted per ray. On the other
side of the eye, a given ray will propagate until it reaches an obsta-
cle, say, the isosurface or the bounding box of the volumetric data
to render. The illumination model will then determine which color
has to be assigned to the pixel belonging to the ray.

Let P be the (3D) coordinate of a pixel on the projection plane.
Each coordinate x of the ray satisfies x = E+ t (P−E), where t
is some rectilinear parameter. To determine the intersection of the
ray with the isosurface, one must essentially solve for the value of
t0 such that

f0 = f(x0) = f(E + t0 (P − E)).

Without loss of generality, from now on we consider that f0 = 0.
Finding the whole isosurface is thus equivalent to finding the set
of x0 such that f(x0) = 0.

Besides enjoying a finite support, a very interesting property
of B-splines is their non-negativity. To see why, consider some
fixed x0: the finite support of the tensor-product B-spline β(x)
will determine the set C of those coefficients ck that contribute
to the evaluation of the continuous model for x0; meanwhile, the
same set C has also to be used for every x in some unit cube1 X
around x0. Now, whenever all members of C happen to have the
same sign, it can be ascertained that the unit cube contains no part
of the isosurface because 0 ≤ βn(x).

This suggests the following preprocessing steps for image ren-
dering: first, subtract the threshold f0 from the data; then, deter-
mine the coefficients ck out of these reduced data; produce an ar-
ray of binary values bk where each element is set to true when
ck < 0, to false otherwise; finally, update this array by computing
its morphological gradient with a structural element that is a cen-
tered cuboid of odd size (1 + 2 �n+1

2
�). Since none of the prepro-

cessing steps depends on the viewing orientation, the volumetric
data can be stored directly as {b, c}.

The rendering itself can now proceed. While exploring a ray
for finding the isosurface, it is enough to hop2 from voxel to voxel,
based on the content of the binary array b. This allows for easy
operations such as cutouts (realized by binary operations on b),
and such as the representation of b by an octree, which could po-
tentially lead to a dramatic acceleration of the rendering by trans-
forming hops into strides. It is only when an element bk indicates
a potential zero-crossing that it is necessary to actually perform the
costly operation of evaluating f for some non-integer x.

4. ROOT FINDING

The set X of coordinates x that share a set C of coefficients ck is
centered on a voxel for even degrees, and on the corner of a voxel
for odd degrees. To simplify the discussion, we will consider only
even degrees from now on.

1Note that x0 is not necessarily in the geometric center of this cube.
For odd degrees, the center is k = �x0� + 1

2
1, while for even degrees it

is k = [x0].
2We observe experimentally that the average jump length is about

0.653; we leave to the reader the task to find the exact value by an ar-
gument akin to Buffon’s needle.

To find a solution to the equation 0 = f(E + t (P − E))
within a voxel indicated by bk as potentially containing a part of
the isosurface, we first identify the two rectilinear parameters t1
and t2 that correspond to the locations where the ray enters, re-
spectively exits the voxel k. We then compute f1 and f2, which
should bracket the isosurface, a condition revealed by f1 f2 ≤ 0.
If such is the case, we proceed with a standard root-finding method
such as Brent’s [20] to get t0 such that f(E+t0 (P−E)) = 0. As
each root candidate x is examined in turn, the continuous model∑

ck β2(x−k) is computed efficiently using the recursion given
in the appendix.

5. VOXEL PRUNING

The series of preprocessing steps proposed above already results
in a significant reduction of the computational burden with respect
to ray stepping. Nevertheless, yet another property of splines al-
lows one to reduce it further: multiresolution space embedding.
For odd degrees, it is possible to represent any spline f(x) =∑

c1(k) βn(x− k) with a basis function consisting of a B-spline
of same degree but with a support scaled-down by a factor 2 (other
factors are possible [14]). The same is true for even degrees, up to
an additional shift. In both cases, we write that

f(x) =
∑
k∈Z

c1(k) βn(x−k) =
∑
k∈Z

c2(k) βn(2 x−k−n mod2

2
)

c2(k) =
∑
l∈Z

c1(l) un
2 (2 l − k)

un
2 (k) =


 2−n

(
n + 1

k + �n+1
2

�
)

k ∈ [−�n+1
2

�, �n
2
� + 1]

0 k /∈ [−�n+1
2

�, �n
2
� + 1].

The argument applies recursively to yield ever-finer coeffi-
cients c2,4,8,.... We take advantage of this alternate representation
of f(x) by remarking that the coefficients c2d(k), d ∈ N are all
multiplied by a non-negative basis function. Thus, it is easy to
detect those cases where the signs of c1 ∈ C differ, but where in
reality no part of the isosurface belongs to X: when this is indeed
the case, there will be a sufficient depth 2d such that all coeffi-
cients c2d(k) have the same sign over the set X—note that c∞(k)
ultimately converges to some f(x).

Thus, we propose an additional preprocessing step that con-
sists in visiting each relevant voxel in b, and that removes all those
cases where it can be determined by the procedure above that no
isosurface is contained within the voxel. For a quadratic model
n = 2, this procedure can as much as halve the original number
of candidates in b. Ideally, the resulting binary volume b should
be a 6-connected, 1 voxel-width shell. In practice, at any depth
d it is necessary to produce and examine the sign of O(23 d n3)
coefficients, which grows very quickly out of manageable size,
even considering that this preprocessing can be performed off-line.
Nevertheless, we will see in Section 7 that a shallow recursion
depth is enough to bring significant benefits.

6. ILLUMINATION MODEL

Once an intersection x0 between a ray and the isosurface has been
located, one must paint the pixel whence the ray originates. We use
here a simplified version of Phong’s illumination model and con-
sider ambient, diffusion, and specular effects, without taking into
account the effects related to light attenuation with distance [21].
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Fig. 1. Phong rendering of a lobster with two positional light
sources.

We must first obtain the gradient of f at x0, which we deter-
mine analytically by differentiating the continuous model. This
yields ∂f(x0)/∂x =

∑
ck ∂β2(x0 −k)/∂x, which can be com-

puted efficiently as indicated in the appendix. We proceed sim-
ilarly for y and z; finally, we get the normal N = ∇f/‖∇f‖
which is a unit-norm vector perpendicular to the isosurface.

Let Lk be a unit-norm vector joining x0 to the k-th light source
of intensity Ik, and let V be a unit-norm vector joining x0 to the
eye E. Our simplified Phong illumination model is then given by

I = ka Ia +
∑

k

Ik (kd 〈N,Lk〉 + ks 〈V,Rk〉ns),

where (ka Ia) is the contribution of ambient light, kd the coeffi-
cient of diffusion and ks the specular coefficient, while ns is the
specular exponent. In addition, Rk = 2N 〈N,Lk〉 − Lk is the
reflection of Lk around N.

Alternatively, we propose a very simple illumination model
that, despite its concise expression, demands high rendering qual-
ity because it tends to highlight only the difficult cases. Our pro-
posed illumination model is given by

I =
(
1 − 〈N,V〉2)no

,

where no is the outline exponent. Its purpose is to emphasize the
contours of the rendering, since those are certainly very important
from a perceptual point of view. Although there are even less phys-
ical justifications for our model than there are in the case of Phong
(we don’t even need any light source!), renderings such as that of
Figure 2 read extremely well.

7. EXPERIMENTS

Figure 1 shows our Phong rendering of a close-up of the 120 ×
120× 34 lobster volume3, while Figure 2 shows the same volume
rendered with our outline illumination model. The size of both
images is 640×360, without antialiasing. The isosurface threshold
f0 = 85.41 has been determined by a K-means algorithm. The
illumination model makes the only distinction between those two
images.

3Lobster dataset courtesy of, and c© by, Advanced Visual Systems, via
Mark Kessler, University of Michigan Medical School.

Fig. 2. Rendering of a lobster with our proposed outline illumina-
tion model.

card(b)
Initial 83′228 100%
Pruning after one level 67′237 80%
Pruning after two levels 56′234 67%
Pruning after three levels 50′463 60%
Pruning after four levels 47′621 57%

Table 1. Effect of pruning on card(b)

We now examine the practical benefits of the approach pre-
sented in this paper and analyze the performance of our algorithm.
Table 1 shows that the whole lobster volume contains 83′228 vox-
els which are close enough to the isosurface that a change in the
sign of the spline coefficients c can be detected within the volume
of influence C of each coefficient ck. After four of the pruning
recursions described in Section 5, we were able to reject 43% of
these candidates, a nearly optimal score.

The vantage point we have selected is inside the volume, in
front of the head of the lobster, midway between its pincers. Since
this corresponds to an extreme close-up, the footprint of a voxel
may cover many pixels of the projection plane. For this configu-
ration, we have painted 109′291 pixels, which is a number much
higher than the number of voxels containing the isosurface.

8. CONCLUSION

We have proposed two complementary ways to accelerate the ren-
dering of an isosurface by ray tracing in the context of spline inter-
polation. At first, by expressing the spline model as a sum of non-
negative basis functions, we are able to obtain a binary volume
that indicates every potential location of the isosurface. As sec-
ond step, we have used the space-embedding property of splines
to prune candidates in this binary volume. The gain can be as
large as the spline degree, a factor two in our case.

We have implemented the renderer in which we propose, as
alternative to Phong’s, a new illumination model that highlights
the outline of the isosurface. This illumination model is highly
sensitive to the accuracy of the volume gradient, which we com-
pute exactly at essentially no cost thanks to a recursive scheme
presented in the appendix.
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9. APPENDIX

We propose here an efficient recursive scheme to compute simul-
taneously an array of B-spline values and of their derivatives for
(n+1) arguments spaced one unit apart, and that can be initialized
by β0(x) = 1

2
(sign(x + 1

2
) − sign(x − 1

2
)){

βn(x) = 1
n

((x + n+1
2

) ∂βn(x)
∂x

+ (n + 1) βn−1(x − 1
2
))

∂βn(x)
∂x

= βn−1(x + 1
2
) − βn−1(x − 1

2
)

For better efficiency, we complement the scheme above by making
use of the property known as the partition of unity. This results
in extra savings. For example, letting n = 2 results in only 13

operations to get {β2(x−1), β2(x), β2(x+1), ∂β2(x−1)
∂x

, ∂β2(x)
∂x

,
∂β2(x+1)

∂x
} under the hypothesis that − 1

2
< x < 1

2
, as follows:

β1
−1 =

1

2
+ x

β1
1 = 1 − β1

−1

β̇2(x − 1) = β1
−1

β̇2(x) = β1
1 − β1

−1

β̇2(x + 1) = −β1
1

β2(x − 1) =
1

2
β1
−1 β̇2(x − 1)

β2(x) =
1

2
((x +

3

2
) β̇2(x) + 3 β1

−1)

β2(x + 1) = 1 − β2(x) − β2(x − 1).
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