
ITERATIVE MULTI-SCALE REGISTRATION WITHOUT LANDMARKS
Philippe Thévenaz, Urs E. Ruttimann and Michael Unser

National Institutes of Health

Bethesda MD 20892–5766, USA

ABSTRACT continuous set of non-singular 3-D affine transforms, which are the
most general linear transformations available, and where by continu-
ity we imply sub-pixel accuracy; our dissimilarity measure is
Euclidean, which is maximum-likelihood assuming additive white
Gaussian noise; finally, our search strategy is multi-scale, for fast
convergence, and iterative, based on a variation of the Marquardt-
Levenberg (ML) algorithm for non-linear least-square optimizations
[18].

We present an automatic sub-pixel registration algorithm that mini-
mizes the mean square difference of intensities between a reference
and a test data set (volumes or images). It uses spline processing, is
based on a coarse-to-fine pyramid strategy, and performs minimiza-
tion according to a variation of the iterative Marquardt-Levenberg
scheme. The geometric deformation model is a general affine trans-
formation that one may optionally restrict to a rigid-body (isometric
scale, rotation and translation), procrustean (rotation and transla-
tion) or translational case; it also includes an optional parameter for
the linear adaptation of intensity. We present several PET and fMRI
experiments and show that this algorithm provides excellent results.
We conclude that the multi-resolution refinement strategy is faster
and more robust than a comparable single-scale one.

2. SYSTEM
2.1. Criterion

Any automatic registration method requires the optimization of an
objective criterion, whose role is to measure the similarity of the test
data with respect to the reference. As criterion, we select ε 2  the aver-
age square difference. Letting fR (x ) and fT (x)  be respectively the
reference and test data, our criterion reads1. INTRODUCTION

Image registration plays a major role in at least two types of applica-
tion: data fusion, where noise reduction is often desired, and data
comparison, for the detection of significant differences.

ε 2 = 1
V f R (x) −Qp f T(x){ }( )2

dx
x∈V∫ (1)

where Qp f{ }  is the transformation of interest described by p , and
where V  represents the volume of interest. This criterion offers the
advantage that it is well understood and lends itself well to minimi-
zation with respect to p . Its drawback is that, in the presence of se-
vere outliers, its minimum may become less pronounced, and may not
even be located where one would expect it to be.

In the first case, one takes advantage of the availability of multiple
instances of supposedly identical data. The registration of these in-
stances with one another allows the extraction of common features,
for example by averaging, or by more refined processes [1]. One can
find successful examples of this approach in the correlation-averaging
of virus particles in high-resolution electron microscopy [2]. It has
also been applied in the consolidation of sparse data, for example
when mapping range images of the sea floor [3].

In our case (medical imaging), outliers do exist, for example when we
compare two functional magnetic resonance images (fMRI) of a brain
in two different states of activation. However, we do not expect these
outliers to be dominant; in fact, the very need for registration arises
from the fact that the differences between the two brain instances are
extremely faint, and cannot be detected without their careful align-
ment.

In the second case, a new problem appears, due to the very fact that
the registration process tries to align data that are possibly dissimilar.
This last consideration sometimes leads to robust registration methods
using an internal criterion that is not sensitive to outliers [4, 5, 6].
After registration, the task usually proceeds by the detection of dis-
similar regions, given a statistically significant level of confidence in
the decision with respect to the type I and type II errors [7].

2.2. Transformation

As transformation of interest Qp ƒ{ } , we consider the general affine
transformation described by a 3× 3  matrix A  and by a translation
vector b

Be it fully automated [8] or not [9], landmark registration is often
proposed as a versatile solution. It allows for a geometric transforma-
tion whose properties can be as general as desired [10], or in the con-
trary be tuned to the problem by additional constraints [11, 12].
However, the solution can be no better than the initial selection of
landmarks allows, which is the crucial component of this approach;
moreover, it fails when sub-pixel accuracy is desired, since the land-
marks are usually selected directly on the discretization grid.

Qp ƒ (x){ } = QA ,b ƒ(x){ } = ƒ (Ax + b) (2)

This transformation includes translation, rotation around any center,
skewing, shearing and scaling. We have also developed more con-
strained versions (e.g., rigid body, procrustean, translation only), and,
as in [4], we have added to all of them a possibility for gray-scale
adaptation; but we do not report on any of these extra versions here.

Registration without landmark is the preferred solution whenever ap-
plicable, since it often takes into account the whole of the available
data by implementing some kind of correlation process. The resulting
benefit is that the robustness of this class of techniques is much
higher than that of landmark-based registration [4]. One may consider
any kind of geometric transformation, be it local and computationally
expensive, like a deformation field [13], or inexpensive, but restricted
to a global translation [14].

2.3. Multi-scale processing

We will see below that our approach is iterative. We presently take
advantage of this fact by introducing a change of resolution between
some of the iterations. Using a coarse-to-fine strategy enables us to
perform a first parameter estimation at the coarsest level of a resolu-
tion pyramid; after this first estimation is deemed satisfactory, we
switch to a finer level, using the previous parameters as initial condi-
tions for carrying the optimization on the new level. At each new
level the convergence is fast, since these propagated initial conditions
are close to the actual optimum.

In this paper, we address the problem of registration for data compar-
ison purposes, without landmarks, and with a global affine transfor-
mation paradigm. This transformation is more general than the one
used in [15]. We present a fully automatic iterative multi-scale regis-
tration with sub-pixel accuracy, extending the work in [16] by con-
sidering a full tri-dimensional (3-D) approach. In the terminology of
[17], we use the raw intensity as our feature space, thus effectively
exploiting all the information in the image; our search space is the

In fact, for practical purposes, the quasi-Newtonian optimization
method that we use can converge in just one step if the previous esti-
mate is sufficiently good, which is often the case for all but the coars-
est level where most of the iterations are spent, but where fortunately



the data set is small. This saving reflects itself in the computation
time, which is greatly reduced.

Tb Ta ƒ(x){ }{ } =ƒ (x + a+ b) = Ta+b ƒ (x){ }
AB AA ƒ (x){ }{ } = ƒ (BAx) = ABA ƒ(x ){ }
Tb AA ƒ(x){ }{ } =ƒ (Ax +b)= AA TA −1b ƒ(x){ }{ }
AA Tb ƒ (x){ }{ } =ƒ (A x +b( )) = TAb AA ƒ(x){ }{ }

(4)Another very important advantage of using a resolution pyramid is
that its embedded smoothing properties tend to regularize the prob-
lem by letting the surface ε 2(p)  be also smoother at coarser scales:
the image size reduction effectively removes most of the noise. With
most images, it is very likely that the location of a near-absolute op-
timum in the coarsest level will not be missed, whereas it would pos-
sibly be, if only the finest level would be looked at. This is important
since, contrary to [19], we do not make use of an optimization proce-
dure that would be able to escape from local minima. The pyramid is
computing according to [20, 21] with cubic splines.

These operators are distributive with respect to the addition

Tb ƒ (x) + g(x){ } = Tb ƒ(x){ } +Tb g(x ){ }
AA ƒ (x) + g(x){ } = AA ƒ (x){ } + AA g (x){ } (5)

Looking at the squared norm of the signal, we have

Tb ƒ (x){ } 2
= ƒ (x) 2

AA ƒ (x){ } 2
= ƒ (x) 2 A (6)
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Using the previous expressions, we can now rewrite a criterion ex-
actly equivalent to (1) as

ε 2 = AI+ ∆A T∆b f T (x ){ }{ } − AA−1 T −b f R (x){ }{ } 2
(7)

ε 2 =
1

I+ ∆A
⋅ f T (x )− A I+∆ A( )−1 A−1 T −b− A I+∆A( )∆b f R (x){ }{ } 2

(8)

ε 2 = A ⋅ Tb+A I+∆A( )∆b AA I+ ∆A( ) f T(x){ }{ }− fR (x)
2

(9)
Figure 1: Outline of the registration algorithm

Minimizing (7) with respect to ∆p =(∆A ,∆b)  is equivalent to the
more traditional minimization of (9) with respect to p  when written
with ∆p = 0 . The advantage of the minimization over ∆p  instead of
p  is that the Hessian matrix required in ML has now to be computed
once only, at the parameter value ∆p = 0 ; the same is true for the
derivatives ∂ fT ∂∆p( )

∆p= 0
.

2.4. Optimization

Our choice for solving ∂ε2 (p) ∂p = 0  is ML, an iterative gradient-
based algorithm for non-linear least-squares optimization problems
[18]. The system is depicted in Figure 1, where we see that at each
step fT (x)  has to undergo Qp ƒ{ }  before it is compared to fR (x ).
The reslicing needed in the geometric transformation is performed by
resampling a cubic spline model fitted to the volume. The optimiza-
tion requires the explicit knowledge of the partial derivatives
∂ fT ∂p , which are computed by using a cubic spline fit again, along
with the techniques described in [20, 21]. In section 3 we will propose
an approach to further accelerate the standard ML algorithm when the
transformation satisfies certain commutativity and distributivity rules.

It also simplifies the dependencies between the ∆pi  parameters, the
only cost being a slightly more complicated parameter update proce-
dure, that is, p → p + ∆p  has to be replaced by the set of rules given
in (8). In essence, we now update the transformation that is applied to
fR  instead of fT .

3.3. Level change
2.5. Convergence Since our approach is pyramidal, at each level change we not only

have to compute new derivatives and Hessian, but we also need to
update the parameters between levels. Consider an initial geometric
transformation Tb AA ƒ(x){ }{ }  given by

We consider three concurrent criteria for deciding when to stop the
iteration process. The first one is self-evident: we stop when a near-
perfect match is met, that is, when ε 2 ≤ T, where T  is some pre-
scribed threshold. The second has to do with the observed relative
gain ∆ε2 ε2  at each successful iteration step: we declare that the
convergence is reached whenever this gain is below another user-se-
lected threshold. The third one concerns itself with ∆pi pi  the rela-
tive change of parameter values at every iteration step: when at least
one of the parameters is alive, we keep on going; but when all are
motionless we stop. If any parameter pi  happens to be zero, or near
zero, we substitute ∆pi pi  by a similar, although possibly less effec-
tive criterion extracted from some of the parameters of the ML algo-
rithm, guaranteed not to suffer from normalization problems, and
guaranteed to converge towards zero when the number of iterations
grows high enough.

y1 = b1 +a11x1+ a12x2 +a13x3
y2 = b2 + a21x1 + a22x2 + a23x3
y3 = b3 + a31x1+ a32x2 + a33x3

 
 
 

(10)

Apply some scale factors λ1,λ2 ,λ3( )  and compute a new, equivalent
transformation T ′ b A ′ A s( ′ x ){ }{ }  as in

′ y 1 = ′ b 1 + ′ a 11 ′ x 1 + ′ a 12 ′ x 2 + ′ a 13 ′ x 3
′ y 2 = ′ b 2 + ′ a 21 ′ x 1+ ′ a 22 ′ x 2 + ′ a 23 ′ x 3
′ y 3 = ′ b 3 + ′ a 31 ′ x 1+ ′ a 32 ′ x 2 + ′ a 33 ′ x 3

 
 
 

′ x 1 =λ1x1
′ x 2 = λ 2x 2
′ x 3 = λ 3x3

 
 
 

′ y 1 =λ1y1
′ y 2 = λ 2y2
′ y 3 = λ3y3

 
 
 

(11)

These four systems of three equations are satisfied by

′ b 1 = λ1a1
′ b 2 = λ2a1
′ b 3 = λ 3a1

 
 
 

′ a 11 = a11 ′ a 12 = λ1

λ2
a12 ′ a 13 = λ1

λ 3
a13

′ a 21 = λ 2

λ1
a21 ′ a 22 = a22 ′ a 23 = λ 2

λ3
a23

′ a 31 = λ 3

λ1
a31 ′ a 32 = λ3

λ2
a32 ′ a 33 = a33

 

 
 

 
 

(12)

3. ACCELERATED MARQUARDT-LEVENBERG
3.1. Requirements

Let us decompose the operator Qp ƒ{ }  into a translation and a matrix
operation given respectively by

Qb ƒ (x){ } = ƒ(x + b) AA ƒ (x){ } = ƒ (Ax) (3) This last equation allows us to carry a description of the geometric
transformation from one level of the pyramid to the next. It also
needs to be applied at the change of level, when the origin of the co-
ordinate system is displaced.

The composition rules for these operators are



4. EXPERIMENTS i ii iii iv v vi
∆x 0.800 1.333 2.133 2.667 2.933
∆ ′ x 0.820 1.372 2.186 2.735 3.003
θ 0.23 0.47 0.70 0.93 1.17 1.40

′ θ 0.23 0.47 0.66 0.87 1.09 1.37

4.1. Ideal case

We begin our experiment series with a noise-free case, and we further
simplify the problem by considering an image instead of a volume.
First, we scale by λ , rotate by θ = 5°  and translate by
(dx,dy) = (5,5)  the Lena image using cubic spline resampling. We
then use this image as our reference and try to align the original to-
wards it. Since our registration procedure also uses cubic spline re-
sampling, an exact match is a priori not impossible. Table 1 gives the
considered parameters (including N  the number of levels in the
pyramid and t  the relative computation time), their estimation by our
registration algorithm, and the residual error ε 2  expressed in dB as a
SNR between the aligned fT (x)  and fR (x ).

Table 3: Two fMRI experiments

We see that the agreement between the synthetic and the estimated
displacements is fairly good; the same can be said of the measured
and the estimated angle of rotation. Unfortunately, the precision of
the mechanical device used for rotating the phantom is unknown; but
the true difference θ − ′ θ  can be considered to lie within a tenth of a
degree. We should add here that the limited range we explored was
constrained by mechanical limitations. Given the identity transforma-
tion as initial guess, other experiments have shown that our registra-
tion algorithm still converges for angles  as big as 30˚ .

i ii iii iv v vi
N 4 4 4 3 2 1
t 0.30 0.23 0.22 0.22 0.31 1.00
d ′ x 5.0010 5.0002 4.9983 4.9983 4.9984 4.9999
d ′ y 5.0057 5.0002 5.0018 5.0018 5.0016 4.9992

′ θ 5.0070 5.0003 5.0015 5.0015 5.0014 5.0035
′ λ 0.7999 1.2500 1.0000 1.0000 1.0000 0.9999

λ 0.8 1.25 1 1 1 1
ε2 42.05 43.29 43.26 43.26 43.28 43.03

4.4. Uncontrolled 3-D PET brain scans

In the previous experiments we showed cases where the deformation
model (affine transformation) was consistent with the data. In the
next example, this assumption will be no more valid: consider brain
volumes acquired through a Positron Emission Tomography (PET)
imaging device, and take several patients into account. The goal is
now to register these brains with one another. Since they belong to
different subjects, they exhibit not only size differences but also
shape differences, which introduces outliers in the statistics of the dif-
ference volume. Figure 2 shows a set of unregistered slices of several
patients, cut at the same nominal position in the original volumes.
The top left is the reference slice, and the bottom right is the average
of the selected slice for all 32 patients. Figure 3 shows the same con-
figuration after registration in 3-D.

Table 1: Ideal registration experiment

In this table, ′ θ  has been estimated from the general affine transfor-
mation, and ′ λ  from its determinant ( λ  is the correct value). We see
that the fit is almost perfect, the relative error on the parameter esti-
mation being most of the time lower than 1‰ . We even had to resort
giving many digit figures for showing the accuracy of the estimates.

4.2. Noisy case

We now add some white Gaussian noise to the previous test and ref-
erence images and we observe its effect on the registration. The
amount of added noise is the same for fT (x)  and fR (x ), is indepen-
dent for each of both images, and is reported in dB. Table 2 shows the
results of these experiments, with N = 4 , (dx,dy) = (5,5) , θ = 5° ,
and λ =1.

i ii iii iv v vi
SNR 25 20 15 10 5 0
d ′ x 4.9981 5.0008 4.9918 4.9883 4.9629 4.9058
d ′ y 5.0022 4.9988 5.0170 5.0314 5.0533 5.1996

′ θ 5.0005 5.0024 5.0027 5.0112 5.0447 5.1102
′ λ 0.9999 1.0000 0.9999 1.0000 0.9997 0.9995

ε 2 23.86 18.46 13.34 8.35 4.05 0.77
Figure 2: Unregistered slices and their average

Table 2: Noisy registration experiment

Even when the signal is in a one-to-one ratio with noise (0 dB case),
the parameter estimation is still very good (the relative error is lower
than 5% ). In this experiment, like in the previous one, we used the
identity transformation as initial condition for the registration algo-
rithm.

4.3. Controlled 3-D fMRI phantom

For this experiment, we used a 3-D phantom acquired through the
functional Magnetic Resonance Imaging (fMRI) system described in
[22]. We performed two separate sets of experiments. In the first one,
we reconstructed the phantom from the Fourier domain with an added
linear phase (synthetic translation); in the second one, we physically
rotated the phantom by a known angle. Tables 3 shows the respective
results of these two experiments, where ∆x  (in voxel units) stands for
the synthetic displacement, ∆ ′ x  for its estimation through our regis-
tration procedure, and where θ  (in degrees) stands for the measured
physical rotation and ′ θ  for its estimation. Figure 3: Registered slices and their average



In our registration algorithm, the specification of V , from equation
(1), allows one to mask out irrelevant features. Since PET images are
typically noisy, we took advantage of this masking and ignored most
of the background contribution, which explains the disappearance of
streaks in Figure 3.

[7] U.E. Ruttimann, M. Unser and D. Rio, "Statistical Analysis
of Image Differences by Wavelet Decompositions," in
Proc. 16th Annual Int. Conf. of the IEEE Engineering in
Medicine and Biology Society, Baltimore, Maryland,
U.S.A., November 3-6, 1994, pp. 28a–29a.

Regarding the success of the registration, it is clear that most of the
brain features are better resolved in the registered average volume
than in the unregistered one (lower-right part of Figures 4 and 3 re-
spectively). It tends to show that our least-squares registration crite-
rion is robust enough to cope with outliers, i.e., deformations that
cannot be modeled by an affine transformation. Another kind of out-
liers, not striking in the displayed figures but nevertheless present,
has to do with the fact that the intensity contrast of the volumes dif-
fers from one patient to the next. Our registration algorithm can take
this effect into account and determine a best linear remapping of the
intensity that, when applied concurrently with the geometric affine
transformation, minimizes the criterion shown in equation (1).

[8] Q. Zheng and R. Chellappa, "Motion Detection in Image
Sequences Acquired from a Moving Platform," in Proc. Int.
Conf. Acoustics, Speech, and Signal Processing,
Minneapolis, Minnesota, U.S.A., April 27-30, 1993, pp.
V-201–V-204.

[9] G.Q. Maguire, Jr., M.E. Noz, H. Rusinek, J. Jaeger, E.L.
Kramer, J.J. Sanger and G. Smith, "Graphics Applied to
Medical Image Registration," IEEE Computer Graphics
and Applications, pp. 20–28, 1991.

[10] J. Flusser, "An Adaptative Method for Image Registration,"
Pattern Recognition, vol. 25, no. 1, pp. 45–54, 1992.

[11] B.C.S. Tom, S.N. Efstratiadis and A.K. Katsaggelos,
"Motion Estimation of Skeletonized Angiographic Images
Using Elastic Registration," IEEE Trans. Medical Imaging ,
vol. 13, no. 3, pp. 450–460, 1994.

5. CONCLUSION
We have described a fully automatic registration algorithm that uses
raw intensity as feature space and considers a Euclidean least-squares
criterion for the simultaneous determination of a general 3-D affine
transformation and of a linear change of intensity contrast. The search
strategy takes advantage of a resolution pyramid and is based on a
variation of the Marquardt-Levenberg algorithm for non-linear least-
squares optimization. We perform all the processing steps with cubic
spline models.

[12] T. Wakahara, "An Iterative Image Registration Technique
Using Local Affine Transformation," Systems and
Computers in Japan, vol. 21, no. 12, pp. 78–89, 1990.

[13] Y. Amit, "A Nonlinear Variational Problem for Image
Matching," SIAM Journal on Scientific Computing , vol. 15,
no. 1, pp. 207–224, 1994.We have implemented this algorithm and we have presented several

experiments involving 2-D images and 3-D volumes as well. We
were able to show a good performance of our algorithm through a
whole range of cases (synthetic problem, synthetic problem with
added noise, controlled 3-D experiment with real data, real data with
geometric outliers and intensity outliers).

[14] J. Noack and D. Sutton, "An Algorithm for the Fast
Registration of Image Sequences Obtained with a Scanning
Laser Ophtalmoscope," Physics in Medicine & Biology,
vol. 39, no. 5, pp. 907–915, 1994.

[15] R.P. Woods, S.R. Cherry and J.C. Mazziotta, "Rapid
Automated Algorithm for Aligning and Reslicing PET
Images," Journal of Computer Assisted Tomography, vol.
16, no. 4, pp. 620–633, 1992.

An attractive feature of this registration algorithm is that it can easily
incorporate a priori knowledge by the way of a (possibly multi-val-
ued) mask. Another attractive feature is that the user can constrain the
general affine transformation to be a rigid-body transformation, or
even a procrustean transformation. Finally, the cost, in terms of com-
putation time, is minimized through the use of a resolution pyramid.

[16] M. Unser and A. Aldroubi, "A Multiresolution Image
Registration Procedure Using Spline Pyramids," in Proc.
SPIE, San Diego, California, U.S.A., July 15-16, 1993, pp.
160–170.REFERENCES

[17] L.G. Brown, "A Survey of Image Registration Techniques,"
ACM Computing Surveys, vol. 24, no. 4, pp. 325–376,
1992.

[1] M. Irani and S. Peleg, "Improving Resolution by Image
Registration," Computer Vision, Graphics, and Image
Processing, vol. 53, no. 3, pp. 231–239, 1991.

[18] D.W. Marquardt, "An Algorithm for Least-Squares
Estimation of Nonlinear Parameters," Journal of the Society
for Industrial and Applied Mathematics, vol. 11, no. 2, pp.
431–441, 1963.

[2] J. Frank, A. Verschoor and M. Boubik, "Computer
Averaging of Electron Micrographs of 40S Ribosomal
Subunits," Science, vol. 214, pp. 1353–1355, 1981.

[3] B. Kamgar-Parsi, J.L. Jones and A. Rosenfeld,
"Registration of Multiple Overlapping Range Images:
Scenes without Distinctive Features," IEEE Trans. Pattern
Analysis and Machine Intelligence , vol. 13, no. 9, pp. 857–
871, 1991.

[19] V.R. Mandava, J.M. Fitzpatrick and D.R. Pickens, III,
"Adaptive Search Space Scaling in Digital Image
Registration," IEEE Trans. Medical Imaging, vol. 8, no. 3,
pp. 251–262, 1989.

[20] M. Unser, A. Aldroubi and M. Eden, "B-Spline Signal
Processing: Part I—Theory," IEEE Trans. Signal
Processing, vol. 41, no. 2, pp. 821–832, 1993.

[4] M. Herbin, A. Venot, J.-Y. Devaux, E. Walter, J.-F.
Lebruchec, L. Dubertret and J.-C. Roucayrol, "Automated
Registration of Dissimilar Images: Application to Medical
Imagery," Computer Vision, Graphics, and Image
Processing, vol. 47, no. 1, pp. 77–88, 1989.

[21] M. Unser, A. Aldroubi and M. Eden, "B-Spline Signal
Processing: Part II—Efficient Design and Applications,"
IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 834–848,
1993.

[5] J.Y. Chiang and B.J. Sullivan, "Coincident Bit Counting—
A New Criterion for Image Registration," IEEE Trans.
Medical Imaging, vol. 12, no. 1, pp. 30–38, 1993. [22] P. van Gelderen, N.F. Ramsey, G. Liu, J.H. Duyn, J.A.

Frank, D.R. Weinberger and C.T.W. Moonen, "Three
Dimensional Functional MRI of Human Brain on a Clinical
1.5T Scanner," Proceedings of the National Academy of
Sciences, vol. in Press, 1995.

[6] A. Venot, L. Pronzato and E. Walter, "Comments about the
Coincident Bit Counting (CBC) Criterion for Image
Registration," IEEE Trans. Medical Imaging, vol. 13, no. 3,
pp. 565–566, 1994.


