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A Pyramid Approach to Subpixel
Registration Based on Intensity

Philippe Thévenaz, Urs E. Ruttimann, and Michael Uns&gnior Member, IEEE

Abstract—We present an automatic subpixel registration al- brain. In both applications, the changes to be detected are
gorithm that minimizes the mean square intensity difference yery small (less than a tenth of the dynamic range for PET,

between a reference and a test data set, which can be eithery\q oyen |ess for fMRI), demanding accurate registration.
images (two-dimensional) or volumes (three-dimensional). It uses

an explicit spline representation of the images in conjunction 1MiS requirement rules out many of the methods involving
with spline processing, and is based on a coarse-to-fine iterative finite search techniques or quantized parameter spaces; only
strategy (pyramid approach). The minimization is performed subpixel methods are adequate. Furthermore, the difficulty of
according to a new variation (ML*) of the Marquardt-Levenberg  creating a robust, yet precise, algorithm for properly selecting

algorithm for nonlinear least-square optimization. The geometric . . .
deformation model is a global three-dimensional (3-D) affine landmarks in a 3-D grid rules out landmark-based registra-

transformation that can be optionally restricted to rigid-body ~ tion, especially in PET images, since these are usually very
mation (rotation and translation), combined with isometric scal- noisy and cluttered with artifacts (see Fig. 1). Therefore, we
ing. It also includes an optional adjustment of image contrast prefer to explore methods that use the unaltered intensity

differences. We obtain excellent results for the registration of : ; " ; :
intramodality positron emission tomography (PET) and func- of all image pixels, thus exploiting effectively all available

tional magnetic resonance imaging (fMRI) data. We conclude Information. Another aspect is the interpolation needed in
that the multiresolution refinement strategy is more robust than applying the transformation. While the majority of published
a comparable single-stage method, being less likely to be trappedmethods limit themselves to linear interpolation, we prefer
into a false local optimum. In addition, our improved version of 5 higher interpolation order to minimize image blurring and
the Marquardt-Levenberg algorithm is faster. to achieve consistency in computing the spatial derivatives
Index Terms—Affine transformation, intramodal voxel-based required for the registration process. A final need to be met by
registration, Marquardt-Levenberg nonlinear least-squares opti- -, registration method is versatility in selecting a deformation
mization, multiresolution, spline. > L . . . .
model: In some applications, such as intrasubject registration, a
rigid-body transformation is appropriate, while in others, such
as intersubject registration, a more complicated deformation
model must be selected. Our deformation model considers
HE NEED for image registration arises in many fieldghe combination of a full 3-D affine transformation and an
of research, most often in applications involving thentional linear contrast change. We derive simpler models
comparison of a series of images. Of interest may be 1§ restricting the affine transformation to specific parameter

detection of change, and the consolidation of data (or imaggysets, implementing combinations of rotation, translation
fusion), where different images of the same object need to be icometric scaling

brought into correspondence. Remote sensing and biomedicat
imaging are typical application areas. Due to the recurr

problem of registration, many solutions have been propos st-squares criterion [5], [6]. In this paper, we introduce

[1](_)[3]' ific int tis the detecti ¢ sianificant di two extensions of this algorithm. First, we speed up its
ur spectiic interest Is the detection of signicant dile, oyt by taking advantage of the particular structure

ferences between biomedical images obtained from diﬁerer}t . -
: ; . . our deformation model. Specifically, we reformulate the
subjects, or from the same subject at different times. Pn

particular, this requires the three-dimensional (3-D) intramodoaﬁ)tlmlzatlon problem in such a way that we can precompute

registration of positron emission tomography (PET) or funépost of the terms required for building the Hessian and the

tional magnetic resonance imaging (fMRI) images of th%radlent of the criterion, instead of having to reevaluate them

at every iteration as required in the traditional approach.
As a second extension, we cast Marquardt—Levenberg into
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I. INTRODUCTION

he Marquardt—Levenberg nonlinear optimization algorithm
is well suited for performing registration based on a
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choice of two transformations: a general affine transformation
and its restricted rigid-body version. In Section 1V, we first
give a descriptive computational approach to the standard
Marquardt—Levenberg (ML) algorithm, and then explain how
to achieve further acceleration by tuning it to our specific
application, leading to a proposal for a new optimization
algorithm (ML*). We also propose a heuristic for deciding
when convergence has been reached. In Section V, we dis-
cuss the choice of the cubic spline interpolation model. In
Section VI, we discuss the use of a multiresolution pyramid
and its benefits. Finally, in Section VII, we provide several
application examples before we conclude in Section VIII.

Il. LITERATURE REVIEW

There are numerous ways to categorize the different im-
age registration methods [1], [3], [8]. Here, we adopt the
classification system of [1], which distinguishes three main
categories, each of which can be further subdivided. The first
category refers to the type of image feature considered, the
second addresses the search space, or equivalently the type
of transformation that is applied to the image, while the
last describes the search strategy. Following this scheme, we
give below a short discussion of the most important recent
only a few iterations are needed because of near-optimagistration methods.
initial conditions. For many types of optimizers, this strategy
for convergence is significantly faster than a single-stage Image Features
approach, but in the case of Marquardt—Levenberg (and ourr image features used in a given algorithm have im-

extension thereof), the benefits are even greater because r(1)'{%ant practical significance because they often determine

algorithm is superlinear and converges much faster than MaHat kind of images it is capable of registering. For example,

other minimization schemes so long as the initial estimate Is_.. . .
; " : .~ spatial coordinates (landmarks) are well adapted to intermodal
close to the correct solution. In addition, a multiresolution’ . . ) -
reiﬂlstratlon, where the purpose is to register two volumes

e

strategy improves robustness, in the sense that it decreases Seuri . : ;
- . . medsuring different properties of an object. However, the
likelihood of being trapped at a false local optimum. . . . - i
o . .. selection of landmarks is recognized to be a difficult prob
A distinctive feature of our approach is that we consider .
oo . : . m [9], [10], whether done automatically [11] or manually
spline interpolation models that are superior to those typical ¥2]_ For many images, this is a serious drawback because

.USEd fqr Image registration (E.)'g" bilinear interpqlatign). B egistration accuracy can be no better than what is achieved
increasing the order of the spline, we can get arbitrarily cIO%e the initial selection of landmarks. For practical reasons

to the sinc interpolation model [7]. In practice, we use cub number and precision of landmark locations is usually
splines because they are already remarkably close to this id?a? . : ; -

at a cost that is less than truncating and apodizing a Sir|1mited. Hence, spatial coordinates and geometric primitives
kemel [5]. Our spline model is Wellgsuited fr(J)r comg utin Often oversimplify the data by being too sparse and imprecise.
: e P : : puting By contrast, registration methods based on initial intensity
image pyramids and for performing geometric transformatlogalues can make effective use of all data available [13]; if

at various resolutions. It also allows for an easy computation . ; A
L : Necessary, some binary masking or other weighting process
of exact derivatives. By using the same model at each st

e : ) .
! . . ay be introduced to emphasize special features. Robustness
we ensure that the overall algorithm is internally consistent, : o

: . : . . is controlled through the use of appropriate similarity measures
The algorithm that we propose is entirely automatic. Smt%I

L : f4]—[16]. With the use of theoretical models, intensity-based

it is pixel based, no landmarks are required. We have uséd ) L

. . e : ethods can produce continuous deformation fields [17].

it successfully without modification—not even tuning—for

the registration of a whole variety of biomedical imagea Search Space

including PET, MRI, and fMRI data, and high-resolution "

electron micrographs of virus particles. Geometric transformations can be divided into three cate-

gories: global, local, and displacement field. The first usually

involves matrix algebra, in which a single (small) matrix

characterizes the transformation of the entire image or vol-
We begin with a short literature review in Section llume; typical operations are translation, rotation, isotropic

In Section Ill, we describe our registration procedure armt anisotropic scaling, bi- or trilinear transformations, and

include a rationale for the choice of our data-space, for tlggiadratics [18]. The second category, sometimes calkestic

choice of its corresponding objective criterion, and for thmapping allows the transformation parameters to exhibit

Fig. 1. Slice of a typical PET image.

A. Paper Outline
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spatial dependence. These parameters are often definedednto robust registration methods using an internal criterion
certain key points only, and interpolated on a region-by-regiomsensitive to outliers [14]-[16]. After registration, the task
basis [19], [20]. Finally, true displacement fields, sometimesually proceeds to detect dissimilar regions, given statistical
also calledoptical flow result from the use of a (continuous)decision criteria with respect to type | and type Il errors [36].
functional optimization scheme, in which an independent
displacement is computed for each point in the image, with m
constraints arising from soma priori regularization [17],

[21]-[23].

. REGISTRATION PROCEDURE

A. Data Space

In this paper, we consider pixel intensity values as our image

i ] _ features. This choice is appealing because it bypasses the
Given a set of features and a parametric deformation, bafigmentation of data into geometric primitives, a notoriously

the criterion to optimize and the optimization algorithm itsel§jiicuit problem for biomedical images. As mentioned in
define the search strategy. The use of a least-squares crite§@gyion |1-A, the use of pixel intensity values facilitates the
jointly with geometric primitives is popular [24], althoughinciysion of the entire informational content of the data.
it is sometimes replaced by more robust statistics, as thqggreover, the role of the reference and of the test volume can
generated while using a distance map (chamfer transforgy exchanged at will. This allows one to check whether the
[25]. The least-squares criterion is also widely used Wi ersion of the estimated “forward” registration is consistent
intensity values as image features [5], although research@gg, the estimated “backward” registration. This symmetry
sometimes prefer more robust statistics, giving up maximuoperty is not necessarily taken for granted with some al-
likelihood parameter estimation (in the presence of Gaussigyithms based on geometric primitives, for example, in [37].
white noise) in favor of assuring insensitivity to outliers [15]athough raw intensity values are well suited to tasks like
The optimization algorithm reflects the choice of the criterioRje getection of change or intramodality registration, their
When the latter is correlative in nature, gradient-based methods,qciated drawback is their lack of universality: They are
can be used. If the data are regularly spaced, such as in f3g el suited to the problem of intermodality registration,
case of pixel intensity values, both Fourier [26], [27] and a5k in which one usually must resort to an intermediate

wavelet approaches [17] are applicable. Several researchgtg e representation, for example their gradient [38] or their
have explored the possibilities of stochastic, or flnlte-searﬁﬁlstogram [33], [34], [39].

methods: dynamic programming [23], simulated annealing
[28], or genetic algorithms [20]. Exhaustive search has alﬁo Criterion
been investigated. With strong conditioning of the data, near

C. Search Strategy

real-time registration [29] can be achieved. Any automatic registration method requires the choice of an
objective criterion that measures the similarity of the test data
D. Problem Addressed to the reference. As the optimization criterion, we setécthe

integrated square difference of the intensity values, sometimes

An alternative way to classify registration is to look at th@amed the residue. Let; be the reference data ané the
type of problem it addresses. Again, three categories emerggit data. Then, this criterion can be written as
data fusion, motion estimation, and the detection of significant
differences. In the first case, where noise reduction is often e? = // (Fr(x) — Qpifr(x)})? dx
the goal, one takes advantage of the availability of multiple [x}CRa
instances of supposedly identical data. In these instances, =||fr(x) — Qp{fr(x)}I (1)
registration allows the extraction of common features, for
example by averaging, or by more refined processes [3@here Q,{f} is a transformation parametrized hky, and
[31]. Data fusion also arises when one needs to find théwereq is the space dimension. Such a criterion lends itself
correspondence between two images acquired by two or marell to minimization with respect tp, and is well understood.
modalities; applications typically involve remote sensing [33h particular, this Euclidean dissimilarity measure is known
or medical imaging [33], [34]. In the context of motionto be maximum likelihood if the noise is additive, white,
estimation (second category), the problem is to estimate thwed Gaussian. Its drawback is a lack of robustness in the
displacement of a rigid object imaged on some backgrourgtesence of severe outliers (e.g., nonstationary noise), where
with the added challenge of potential changes of pose [38F minimum may become less pronounced. In the worst case,
Since typical applications are video coding, target tracking aodtliers predominate and the paramatefor which <? reaches
autonomous vehicles, computational efficiency is an importatg minimum can be quite different from,, the minimum in
aspect of registration methods used in this context. The thitte noiseless case.
and last category encompasses the detection of significanin medical images, outliers are always present, for example
differences, where the challenge arises because the object itsethe case of two PET images of the same brain at different
may change, aside from modifications of its orientation or ifsinctional states (certain brain areas are expected to display
illumination. A new problem then appears, due to the fadifferent activity levels). However, we do not expect these
that the registration process tries to align data that may betliers to be dominant. In fact, the need for registration arises
intrinsically dissimilar. This last consideration has sometimdscause the differences between the two brain images are
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TABLE |
CoMPOSITION RULES FOR TRANSLATION, AFFINE

TRANSFORMATION, AND CONTRAST CHANGE .
around the coordinate axes by

Q,{Q,{rx}} | & T, A, C, 1 0 0

9 i Ax(w)=10 cos(w) —sin(w)

a 0 sin(w) cos(w)

T, Tpa{f0}  Tap{AW{r0}} To{C.{rOO}} cos(w) 0 sin(w)
Ayw=( 0o 1 0 |, @)

Ay AT, JrO) Aw{roo}  AdC{rool} —sin(w) 0 cos(w)

, CATAOON  CAALFOON  Cpuffoo cosw)  —sin(w) 0

R ool A,(w)=[sin(w) cos(w) O

0 0 1
likely to be extremely small and cannot be detected withogjne of many possible descriptions of a rotation maRixby

careful alignment [40]. Euler angles is (5), shown at the bottom of the page. Note

that the condition known agimbals lock[41], where the
representation of the rotation in terms of Euler angles is not
unique, occurs far frop, 0, ¢} = {0,0,0}. Also, one has

As a first transformation of interesPp{f}, we consider {, ta1e care of the order of operations in the inverse of the
the general affine transformation parametrized by & 3 previous rotation matrix

matrix A, by a translation vectds and by a gray-level scaling

factory. We include no gray-scale shift because it is virtually R™'(¢,0,¢) = A, (—)Ay (—0)Ax (=) (6)
always true in medical images that some level (typically the

background with value zero) has a physical interpretation, andth

should not be changed. This global transformation covers an

combination of congtrast Changge, translation, rotation around = F 0, 9)R(p,0,¢) = R(p, 0, )R (,0,4). (7)
any center, skewing, shearing, and scaling. For our purposew'é define the rotation operatdt, by

is most convenient to decompose the transformation by using el

several operators, namely, a translation operéggran affine R, {f(x)} = f(AL(p)A, ()A, (¥)x),

C. Affine Transformation

operatorA,, and a contrast operatar, 0w (_%’ g) ©
Th{f(x)} = f(x+b) We define the isotropic scaling operator by
Aa{f(x)} = f(Ax) . (2)
{Gf (60} = fx) 5100} = F(e). ©

Considering translation, rotation, scaling, and contrast change,
These operators are subject to the composition rules givermia extend the composition rules of Table | as in Table II,
Table 1. Using (2), we can express our first transformation aghere the explicit composition of two spatial rotations

Ry 910 and R g1 4 involves R, 4 such that we obtain

(10), shown at the bottom of the next page. Finally, we can
@b {f(x)} = Th{Aa{C {f(x)}}} = " [(Ax+b). (3) express our homomorphic transformation by

D. Homomorphic Transformation Qb 0,00 1 (X)) = To{Ss {0y 1, Lf(X) 111}

. =e"f(e"R(p, 0 b).
As an alternative, we propose a second global transfor- ¢1f(e"Rig,0,v)x + b) (11)

mation with explicit restriction to the homomorphic case. I g important to note that all the proposed operators are

can accommodate contrast change, translation, rotation, gfgributive with respect to addition, a property that we shall
isometric scaling, but no skew or shear. To describe rotatig@e |ater in this paper, as follows:

we select a set of three Euler anglgs, ¢, } and we letx
be our isotropic scaling parameter. Let us define the rotations Q,{f(x) + 9(x)} = Qp{f(x)} + Qp{g(x)}. (12)

R(p,0,¢) = Ax(¢) Ay (0) A, (¢)
cos(f) cos(¢) — cos(f) sin(¢) sin(f)
= | cos(¢) sin(¥) + sin(p) sin(0) cos(vp)  cos(¢) cos(y) — sin(p) sin(f) sin(yy) —sin(p) cos(6)
sin(p) sin(¢) — cos(y) sin(f) cos(¢)  sin(p) cos(1) + cos(yp) sin(@) sin(yp)  cos(yp) cos(d)
(5)
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TABLE 1l

ComPOSITION RULES FOR TRANSLATION, ROTATION, SCALING, AND CONTRAST CHANGE

Q{QIrml} | T, S, Rygy C.

Q, o

T, Ty {SeAFOON

S SAT AFOY SercdfO} Su{Bp, Arool} So{CIF0ON
Ry Rygy ISAFOOY Ry IO}

c, G {8 Ar 0o}

[\VV. OPTIMIZATION where N is the number of pixels in the domain of interest and

x; the coordinate of each pixel. We have

_ —1ox’(p)
k 2 8pk

| X
NZ:: (fr(xi)— @Qp{fr(x:)})

We propose to solvé=?(p)/dp = 0 with a new op-
timization scheme that we name ML*. It is a modification
of the traditional Marquardt-Levenberg, an iterative gradient-
based algorithm for nonlinear least-squares optimization prob-
lems [4]. In this section, we first present ML in its original
form, and then proceed to show how it can be acceler-

0Qp{fr(x:)}
G (16)

ted.
ate and
A. Traditional Marquardt—Levenberg (ML) 19%x%( i <8Qp{fT (x:)} 0Qp{fr(xi)}
axr = =
Fig. 2 depicts the traditional ML operative outline. At each 2 Opx 61)’ - Opr Opr
step, fr has to undergo the transformati@p, before it is ?Quifr(x;)}
compared tofr. More specifically, updating the actual set ~ (Fr(xi) = @pifrixi)}) gpkapl ' a7

of M parameterg; requires the computation of an additive
update componentp, satisfying For reasons given in [42], the second derivative terms in (17)

are usually ignored. Let us define

Pir1 =Pt + 0Py (13)
Z an{fT X7 } an{fT (X7 )} ) (18)
with N opy, opi
M Using (18), we characterize (14) by
Zakiépl = (4 bu(l4+X) k=1
=1 g = op(1 + =

where[ag]vrx ar |s derived through the HeSS|an matrix from

gradient of the residue. Approximation by a finite sum of thi¢ updateip, conforms to a Newton method or to a steepest
criterion given in (1) leads to gradient approach. The characteristic of ML is to adayait

each iteration in such a way that the more successful the
previous updategp, have been, the more Newton-like the
next updatedp;,, will be. Conversely, the less successful,
the more gradientlike the next update will be.

IIZ

ZfR xi) — Qp{fr(x:)})*  (15)

a1 = cos(y’) s.in(ﬁ”) + sin(g’) cos(6”) s%n(1//’)

oy = sin(¢') sin(9") — cos( ") cos:(ﬁ”) 5111.(1//’)

s = cos(¢”) cos(¢") — sin(¢”) sin(6” ) sin(¢")

ay = cos(¢” ) sin(y)") + sin(¢’) sin(#”") cos(¢")

sin(f) = cos(@’) + sin(#’) cos(#") cos(4") /
sin(y)) = 22&/;,)) (cos(8) cos(8") cos(¢'") — vy sin(8')) — vy Cf;((w@))
sin(p) = 2:((2)) (cos(¢')sin(¢) cos(8”) + azsin(¢')) — Tﬁq((eﬂ))

(10)
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P, : P, ; ” affine case. For the homomorphic case, we have
— ncremen
z h update , N
P F 3 e? = 7| Car{Rav,a0, a0 {Sar{Tan iz (x)}}}}

_ 2
— — O { RS} AS- AT n{fr(x) 11| (24)
fT ! — Disparit
— & ’@" minimization g’ = 2OHAN=AFA || 1 (x)
+

fr

) —C_y_ny { (RZLlp,AG,Az/) ° R;,le,w){S—H—AK{
Fig. 2. Outline of the registration algorithm. T_b_en+A~R(¢,9,zp)R(Aw,Ae,Aw)Ab{fR(X)}}}} ||2
(25)
B. Modified Marquardt—Levenberg (ML* ) €% = |[ThyertarR(0,6.0)R(Aw, A0, A%)AD]
As both the vectof3,] and the matrix{b,;] (precursor to Setan{(Fyp 0y 0 Bap ae ag){
[ar1]) depend uporp, and asp changes from iteration to Coyar {fr(x) 11} = frR)])?. (26)

iteration, the standard implementation of ML (as presented

above) requires thdi.] and [ar;] be computed explicitly at Next, we show why these equivalent forms are useful. For
each iteration. For our application, we show how to bypasxample, in the affine case, finding a minimum to (21) with
these steps and save the associated computational cost. 'Bgect toAp = (Ay, AA,Ab)" (incremental update) is
general strategy is as follows. Instead of trying directly tBduivalent to writing (23) wittAp = 0 and then minimizing
find parameterg; such that||fs — Qp, {f7}* < |Ifr — this equation with respect tp. This yieldsép according to

2 we try to find such that . _ (13) and corresponds to the standard ML. Minimizing (21)
o L1l y P2 ”QI’D Ur) over Ap instead of the direct minimization of (23) overis

2 _ 2 ; ;
sz{fT}H < HQpEl{f’?}_ Irll” Th'_s new .strategy 'S advantageous because the curvature mdkgi§ needs to be
superior because the gradient of the criteridrwith respect computed only once, at the parameter valp = 0. The
to ps is now indep_endent_of_the initial guegs, and is same is true for the derivative® fr /0Ap)|ap=o. In short,
computed about a fixed point in the parameter space. Usigg solves(9z?(q)/dq)|q=p = 0 in an iterative fashion, while
our definitions of the transformation operators and applyingL* solves (9= (p + q)/3q)|q=0 = 0. In the former case,
appropriate integration variable changes, it is easy to deritree point at whiche? is expanded into a Taylor series changes
the following relations in 3-D: from one iteration to the next, while, in the latter case, this

point is fixed.

After having adapted (14) for the minimization of (21) with
2 _ 2
IFN" = //{x}cR3 (f(x))" dx, respect toAp = 04 ép (see Appendix), one iteration of ML*
BN = I o o o 2 o
44 LGP = pirll /G P o, el

, Al ) the standard ML procedure. Compugig, ; using the updating
||% {f()?f}” }_26_ |}f(x)|2| (20) rules found in (23), test for convergence and go to the next
”Cw:{gf/) ]gxgﬂ 2_7 ||f(x)||2 iteration if necessary. Otherwise, the final transformation is
IC TG = e IF - given by (23).

. . . Applying these operations to the homomorphic case is
using the_ re_latu_)ns in (20) and the results of T?bles . ”S raightforward: Replace (21), (22) and (23), respectively,
and the distributive property (12), we can now write severg (24), (25), and (26). More precisely, write the set

equivalent forms of the criterion (1) for the affine case of equations minimizing (24) and solve them by using
(14), which yields a potential update given byp =

e — ﬁHCA {Aryan {Tap{fr ()11} (Ab, Ar, Ap, A0, Ay, Av)T. The next step is to transform
|A| ! the reference imagefr according to (25). This equation

— C_ {AA{T w{frR(=) (21) describes how to combine the old parametprsand the
updateép when applied tofr (e.g., the rotation would be

e2(v+AY) given by the compositioiR;, 1, A, © R} ), the scaling

2

e = m”fT(X) — C_yoay{Aqan)-1a-1{ would be given by(—x — Ax), etc.). Then, evaluate the

5 residue between the test imagie and the inverse transformed

T v-aa+amyan{fr®) | (22)  reference image),-:{fr}. This residue needs to be scaled

by e?(v+A7)-3(s+45) 1o yield the correct value? for the

criterion (1), or, equivalently, (26). Based on the comparison
between this new? and the best one observed so far, and
Crpar Ur(x)}1}} = frx)I (23) applying the considerations of Section IV-C, decide whether
the potential update should be rejected or not. If the iteration is

where the update in (13) idp = (Ay, AA, Ab)” for the successful, then updateaccording to (26). It is this equation

e = ||Th+A(I+AA)Ah {AA(I+AA) 1
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which describes how to combine the old parameterand There are two points to be addressed regarding our formu-
the updatesp when applied tofr (e.g., the rotation would lation of ML*. The first concerns the substitution of criterion
be now given by the compositiaffz,, 4 , © Ra, as.ay), the (1) by its discrete version (15). At first sight this seems
scaling would be given byx + Ax), etc.). When convergenceunnecessary because we have at our disposal a continuous
is reached, transform the test imafje according to (26) with model of the data (in our case, cubic spline polynomials), but
the best set of parameters observed so far. it is nevertheless beneficial both in a practical and a theoretical
In summary, we update the inverse transformatigf-: sense. The practical benefit is an obvious computational sim-
that is applied tofr instead of the direct transformationplification: The explicit integration of splines requires more
@ that is applied to fr. Note that the optimization operations than does a simple addition of terms. In any case,
process requires explicit knowledge of the partial derivativélse discrete version is very close to the continuous one [6].
0fr(Qp(x))/0p = (Ofr(Qp(x))/0x)(0Q(x)/Ip), where The theoretical benefit arises from the fact that the data set
fr(@p(x)) is an equivalent notation fo,{fr(x)}. Given is finite: In (1) we perform integration over the entire domain
our transformation (either affine or homomorphic), wef real numbers X, norm). In practice, however, the domain
determine analytically the dependen#@,, (x)/dp from (21) is always limited by the size of the image. By introducing a
or (24), respectively (see Appendix), while we compute tHaite domain of integration, the Leibnitz rules for derivatives
spatial gradient)fr(Qp(x))/0x from the coefficients of the are required in the computation ¢t%(p)/dp, which then
exact cubic spline fit to the data using the digital filterinpecomes explicitly dependent on the integrand in (1), evaluated
techniques described in [43], [44]. at the borders. This last requirement is undesirable; intuitively,
one would prefer to see all the contributions in (1) to be
equally weighted, which is exactly what the discrete version
C. Convergence (15) does. In fact, the discrete implementation allows for a
We consider three concurrent criteria for deciding when gontrolled weighting of the measurements. For example, the
stop the iteration process. The first is self-evident: We st@piginal ML formulation uses weights inversely proportional
when a near-perfect match is met, that is, when< 7;, tothe measurement variance. In our application, we use binary
where T} is somea priori threshold. The second uses thégnasking whenever convenient, which corresponds to unitary
observed relative gail\y?/x? at each successful iterationor infinite variance. The mask is transformed in the same way
step: We declare convergence to be reached whenever #fighe data (albeit with nearest-neighbor interpolation).
gain is below anothen priori threshold7:. The third one  The second point concerns the validity of the relations in
uses|éps /pr|, the relative change of parameter values at ea€R0) (involving for exampled andS,), which hold formally
iteration step: When at least one of the parameters is sghly if one considers an infinite domain of integration. We
changing, we continue; but when all are no longer changingrggue that ML* holds even under finite data (or masking),
we stop. If any parameter, happens to be zero, or near zeraprovided that at least one of the two following conditions is
we substitutelépy, /pr| < 15 by a similar, although possibly satisfied: either the scaling factaer or the determinantA|
less effective criterion extracted from some of the parametdgsclose enough to unity, or sufficient data are available. In
of the algorithm. Specifically, we usp;;épi/3:| < T4, the latter case, convergence will occur for the same values in
which behaves asymptotically liké/) for increasing). If, p, whether the criterion” is expressed in the regular (ML)
by mishap, or because an optimum has been nearly reachidin the modified (ML*) form. In most applications, both
even the gradien®; is too small for this last criterion to be conditions are usually satisfied.
applicable, we iterate anyway and rely on the two previous
criteria to eventually determine that convergence has been V. INTERPOLATION MODEL

really reached. Interpolation is a model-based process that allows one to

recover the value of a function from a given set of its samples,
within a given abscissa range. Here, we have chosen to make

) ) o use of a separable model because such a model is easy to
We use the technique of singular value decomposition fﬂ{anipulate. It is given by

the solution of the system of linear equations in (14). Apart
from robustness, its advantage is that it allows for a reduction
in rank of the matrix[ay;]. Such reduction may arise, for f(x) = Z C(k)HSD(xi — ki) (27)
example, when a parameter is forced to an arbitrarily fixed hezt =

value. This last feature allows to tune the whole algorithmvhere ¢(k) is a discrete set of coefficients ang(x) is a

by independently switching on or off the optimization of angontinuous synthesis function. For example, [45] has proposed
of the parameters. Typically, partial optimization is usefub usey(z) = sinc(z). This choice limits f(x) to being a
when dealing with images instead of volumes, because thirte-bandwidth function with coefficients given hyk) =
parameters needed for the description of a two-dimensiorfgk). We prefer to usep(z) = A" (z), where 3" is
(2-D) transformation are a subset of those needed for 3-D. Forsymmetrical spline of degree. In this case,f(x) is a
example, the rotation of an image is equivalent to the rotatipmecewise polynomial function, and the model is especially
of a volume withy = 0, § = 0, with %0 as the only free easy to manipulate both analytically and numerically [43].
rotation parameter. In particular, the set of coefficientgk) can be computed

D. Practical Issues

q
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efficiently by separable recursive linear filtering. This splineve make no use of stochastic procedures that would facilitate

model, although it uses a synthesis function of finite suppothe escape from local minima.

is equivalent to a model that uses a cardinal spline of theWe construct a dyadic pyramid by starting at some actual

same degree, which has an infinite support for > 2. As (fine) level, of which we compute a coarser representation

the degree of the cardinal spline tends to infinity, Shanndor the next level. We take advantage of the spline model

interpolation and spline interpolation become equivalent [7]to minimize in a least-squares sense the difference between
In this paper, we select = 3 because it has severalthe fine and the coarse representations, and we then proceed

advantages. First, a cubic cardinal spline is already quitecursively. This implementation of the pyramid construction

close to a sinc function, at a computational cost that is lower based on [46], using cubic splines.

than would be required within the traditional approach of

truncation and apodization. In this view, it is well suited to

processing data that are approximately bandlimited by natye consistency

or by construction. Second, even though a cubic cardinal

spline is of infinite extent, it does not introduce excessiv

ringing, which makes it an attractive candidate in this type

We feel that it is important to enforce the processing of
ta in a way that is internally consistent. In particular, there

applications. Third, it offers the lowest possible cost at whic© four main tasks where this applies. The first one is the

we can implement ML* in a consistent fashion. This followgomputano_n of a py_ramld. Here, we apply th? technique

because we need to compute the gradient of the image V\R{ﬁsen_ted n [46] , which pro_wdes_ a sequence of fine-to-coarse
respect to the spatial coordinates sampled at the grid poiﬁ%oroxmatlorjs that are optwn_al na Iea_st-s_qua.res Sense. The
in order to compute the gradient ef with respect to the second task is the computation of derivatives; as discussed

registration parameters. Recall that, for splines of degree ZéQOSectlon V, we have selected a_model with an prder high
this gradient is undefined at the sampling points, while it nough to enable exact computation. Note that_, in the case
ill-defined for splines of degree one (the data would have (gthe standard ML, the requirements for_the_ spline order_are
be sampled at the discontinuities). The use of quadratic spli g3S SEVere. There, we perform the derivative computations

would suffice, but it introduces a computational cost exactly&g many points in the pgrameter space, thus Sa”?p"”g the
high as in the case of our choice, degree thregi®F, which gradient values at points in data space that do not lie exactly
' ' Hdthe grid. It follows that inaccuracies tend to even out in

has been shown to be a good compromise between quality %1 T . .

speed for a variety of other tasks as well. the course of 0_pt|m|zat|on, and the probl_em of ill-defined
gradient arises infrequently. By contrast, in the ML* case,
we perform computations once only, at the fixed-point of
identity in the parameter space, which requires to sample the

VI. PYRAMIDS gradient exclusively on the grid. This allows the consideration
of a spline of degree one as a possible model for ML,
A. Multiresolution Processing while barring it for ML*. The third task is the application of

eometric transformations during the course of optimization;

by introduci h f lution bet " ere, we use a resampling scheme in order apply the discrete
Y Infroducing a change of resolution beween one or ano n:?rterion (15) exactly, even though some geometric scaling

of t_he_ |te_rat|ons. For practical purposes, the quas_"NeVVtomﬁﬂght be present in the transformation. Finally, the last task
optimization method that we use can converge in very fef/

; deall tep) if th . imate i fici , strictly speaking, not within the scope of registration, for it
steps (i ealy, one s ep) if the previous estimate is su ICIENHnsists in the production of a transformed test image once the
good. This is often the case for all but the coarsest resoluti

) . . Qnsformation parameters have been determined. However, in
level. Consequently, most of the iterations are Feq“_'red at ¢ ctice, this operation is often desired, and we include it for
;:r:)arsest Ig(;/e{hwhere,bdue ]EO _thel d_ata deﬁlrr_;_?]t_mn mhlfr?mcﬂnpleteness. For this last transformation, we again select the

c p_é/ramklﬂ, € num ?r 0 plxte?_ IS ?ma - TIS TeSUS 1N @odel used during optimization, and again resample because
considerable savings ot computation time. . we want to produce the very data that minimizes the selected

Witerion. Supposing the registration has been successful, any

pyramid 1S th"?‘t the smoothness_ condltlon_s |_mp(_)sed by tHﬁditional process (e.g., change of model order, antialiasing
polynomial splines tend to regularize the optimization prOblemtering, etc.), would necessarily result in an output that

by causing the surfgc&_az (I.)) to_ becqme smocher at coarsey, , longer minimizes the criterion for which the registration
resolutions. The antialiasing filters involved in the downsa arameters have been determined

pling effectively remove more and more of the image detall

and noise. As aresult, the algorithm achieves first a registration

with respect to the large-scale features in the data, and then .

only makes small corrections for progressively finer detailS: Propagation of Parameters Between Levels

For most images, it is very likely that the approximate location Since our method is implemented by a multiresolution
of the global optimum will not be missed by the solution aapproach, the derivatives and the curvature matrices have to
the coarsest level, whereas an attempt to find the solution iy computed at each resolution level, and the transformation
considering the finest level only could more easily beconmparameters need to be propagated between levels. To illustrate
trapped into a false local minimum. This is important becausigis propagation, consider an initial geometric transformation

We take advantage of the iterative nature of the algorith
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T {Aa{f(x)}} given by

Y = b1 a1z + @220 + a13xs
Yo = by + a1 21 + as2xs + assts (28)
Y3 = bs + as1x1 + aza2x2 + assrs.

Consider now the scale factofs , s-, s3) that correspond to
the conversion from one resolution level to the next; typically,
we haves; € {i,1,2}. Applying these scale factors, one
obtains a new, equivalent transformati@i:{Aa {f(x')}}
as in

Yo =0+ dh @)+ dlph + dyan

Yo = b5 + b &) + aby s + dbay

Yo = b + ai, @) + azyvh + dgay

5 /
Ty = S1&1 Y =814%
5 /
Ty = S2%2 , Yo = 5242 (29)
5 /
T3 = S3&3 Y3 = S3Y3.

These four systems of three equations are satisfied by

/= ro= foo—= 51 foo—= 51

by = s1by ay; = agy @1y = 5,012 Q13 = 013

/o / — 8 / —_ / — 5

by = s0by ,  dhy = Pasy aby =ass  dhy = Pass . .
S1 S3

o / s / s / Fig. 3. MRI slice.

b s3b ah, = 22a ah, = 22a Uhg = @

3 — 23U3 31 — 5, 31 32 — 55 32 33 — W33.

30

0 where N is the number of levels in the pyramid apdthe
The last equations show how a description of the geometggace dimension. In particular, for an infinite pyramid and for
transformation is carried from one level of the pyramid t9-D images we haveé = 2nt,. For 3-D volumes we have
the next. In general, the relations in Table | or Table Il arg = 1nt,.
needed to determine the additional translation correction thain order to test this prediction, we first generate a series

may arise when the coordinate system is displaced duringfrandom transformations, each consisting of a rotation with
change of level. a uniformly distributed anglé’ € [-Z, Z], and with an
independent and uniformly distributed translation of each
coordinateA’ € [—2.5,2.5]. In order to remove experimental
A. Ideal Case bias, we apply this transformation twice to the image of Fig. 3;

a first application of the transformation inverse produces

We begin our series of experiments with an ideal casg; ' N :
The test and ref i identical ! g e test imagefr, and a second application of the direct
€ test and reterence sets are identical except for an & sformation produces the reference imafge With this
transformation, and no noise is present. We consider the

) : . ethodology, neither ML nor ML* algorithm is favored. Also,
256 % 256 image of Fig. 3 instead Of_ a volume. Our_goe{ﬂe transformation to recover, being the square of the initial
here is to compare ML to ML*, both in terms of precision

; . random transformation, has twice the range of the original
and speed. For the comparison to be fair, we have modifi cp ; 9 9

L ; i -z Z A € [-5,5].
the convergence criterion presented at Section IV-C so thai?ddom transformationf € [, 75] and A € [5,5]. In

: . . ition, we apply these transformations by resampling a high-
preset number of iterations; are executed at each levein PPy y ping 9

the pyramid, specifying the same number for ML and ML*grder spline mode("). This is essentially equivalent to

. : ' . . sinc interpolation. We then attempt to register the test image
Let : = 0 designate the finest level in the pyramid, and s rerp : P 9 : 9
. ; .. ~1r to its referencefr, which produces an estimated set of
n;p1 = 2n;, ¢ > 0. This strategy ensures that a sufficie - .
: - arameterp. Note that we do not try to recover the rotation
number of iterations are performed at the coarsest level, asfhe .. - s .
o o : . . xactly; rather, we search for a general affine transformation.
initial conditions may be far from optimal at this particula

. ! . e generated 100 random transformations per experiment and
level. At finer levels, the number of iterations can be sharp 9 P P

. : B/ oled the results.
reduced because only a few iterations are necessary when't ig. 4 shows the behavior of the ML* algorithm when we

initial conditions have been properly estimated. Lebe the . use five levels and two iterations at the finest level. The two

time spent on a single iteration at the finest level. Ignorin rves show the time spent at each level. in seconds on a
the computational overheads (e.g., establishing the resolutg) b ;

. ; ) . X BarCZO, and the residue between the transformed test image
pyramid, or computing thg-spline coefficients, or computing

) . ; ) ..~ and the reference after convergence within a given level. This
the final transformation), we predict a total execution time . . .
to be given by last value is computed on the full-scale version of the images.

We see that, although the number of iterations is halved by
N -1 gl (1 _ o0 —q)N) going from one level of the pyramid to the next, the time spent

t = Z not2!! ~97 = By (31) at each level nevertheless increases sharply. We also see that
=0 B the minimization algorithm performs well, reducing the initial

VII. EXPERIMENTS
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i TABLE IV
le+03 E e - F DEPENDENCE ON THENUMBER OF ITERATIONS
] "N, —s—Time perstage 10 Strategy | n, | ML1 ML3  ML*3 |ML1 ML3 ML*3
5 let02 A I — © % pxl] ©[%pxll ©(%pxl] | tls] ¢tls] t[s]
£ ; P 168421 | 1| 4.28 0.70 076 ]09.6 188 152
§ - | 3 32.168.4.2 | 2| 049 0.10 009 |148 287 197
) le+01 - s & 64.32.16.84 | 4 | 048 0.10 0.08 |253 488 290
= o
g ] | E 128.64.32.16.8 | 8 | 0.44 0.12 008 |463 884 470
q =
1e+00 r
3 ) This tends to average out their inaccuracies. However, in the
1e-01 : | : : : 1 0 case of ML*, an accurate definition of the derivatives is crucial
Initial 4 3 2 I 0 because they are computed only once. The second mechanism
Pyramid stage is important when switching from one level of the pyramid to
Fig. 4. Pooled performance of 100 runs of ML* witli = 5 andso = 2. the next. There, a high-order model ensures better consistency

in locating the optima across levels because less aliasing is
present in the coarser pyramid levels as compared to a lower

MULTIRESOLUTION ;éHEi\bE,FJHOF THE ALGORITHMS order model. This results in a better propagation of the initial
Stage | Iterations | ML1 ML3 ML*3| ML1 ML3 ML*3 conditions, which means that the superlln_ear convergence
olpxl] wipsll olpsl) | £1s] £1s ¢ ls] mode of the Marquardt-Levenberg algorithm is reached earlier
Tiitial 15440 45440 45440 with high-order models than with low-order ones.
4 392 3.9962 16922 16424 |00.70 0136 0L00 In terms of speed, the more iterations, the more we expect
3 16 13303 0.3911 0.4809 | 00.95 0192 0123 ML* to be faster than ML. Comparing similar models (ML3
2 8 0.3059 0.1099 0.0932 | 0167 03.32 0198 and ML*3), we see that this advantage shows up clearly even
1 4 0.0454 0.0109 0.0109 | 03.43 06.67 04.18 for as few as two iterations. Although we had left out any
final 2 0.0049 0.0010 0.0009 ?i-;g ;g-;‘i 1;221 % impact of the computational overheads in our prediction (31),
R 3 X ¢

we see that the relation= 2n{, is in rough agreement with

the experimental data. Clearly, a substantial amount of time

along the way. it is very important to have excellent starting conditions for
Our next step is to examine the registration performané@s last level of the pyramid, so that a small number of

from a geometric point of view. To this end, we introducderations is sufficient to reach convergence. If these good

compute by comparing the true transformation to its estimaffoperty of ML or ML* will assure even further benefits. For

In general, the true transformation is unknown (if it wer&is reason, we feel it is especially important to make use of

known, there would be no need for registration). Howevepigh-order models right from the beginning. If time is critical,

transformationp and the true transformatigm on the basis of the pyramid, where they come cheap, and perhaps switch to a

1 lower model for the final level (this approach is not pursued
Z= Card(V) > lp(x) = p)]|- (32) here). '
xeV Table IV presents the results of varying the number of

Table 1l presents the pooled results of 100 registration expefirations (only the results after the final level are given). Here
ments per algorithm, using the same set of random transforrfig@2'M: each entry results from the pooling 0f_100 experiments.
tions for each. The three algorithms that we consider are miA this table: we see that, f% = 2 the further |ter§t|on§ bring

(standard Marquardt—Levenberg, bilinear interpolation), ML3° marked increase in registration accuracy, while it incurs an

(standard Marquardt—Levenberg, bicubic interpolation), arppreciable lengthening of computation time. We explain this

ML*3 (modified Marquardt—Levenberg, bicubic interpolation).behavior by the fact that neither ML nor ML* is a stochastic

Here, by standard ML, we mean Marquardt—Levenberg inagorithm; there is no possible escape from a local minimum.
multiresolution framework. Once such a local minimum has been found, these algorithm

In terms of registration accuracy, we conclude fronyill stay there; no matter hpw many additional iterations are
Table Ill that ML3 and ML*3 are essentially equivalent,performecj’ the accuracy will not increase. )
while the accuracy obtained by ML1 is about fivefold lower. In summary, we conclude_from 'Fhese e_xpen_ments that th_e
Two mechanisms explain this difference. First, within a givefa©St economical way to achieve high registration accuracy is
level of the pyramid, the accuracy is principally dependeltﬁ increase _the mterpolanon order, rather than to increase the
on the resampling precision or, equivalently, the model org&imber of iterations.
It is also influenced by the definition of the derivatives used )
for determining the gradient vector and the Hessian matrik: NOISY Case
This last issue is less important in the case of ML because theHere, we perform essentially the same experiments as in the
derivatives are computed as many times as there are iteratigmsvious section, but we add independent realizations of white
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Fig. 5. Pooled performance of 100 runs of ML* with noise added.

Gaussian noise to both the reference and test images befc
their registration. We report the amount of added noise as
signal-to-noise ratio (SNR} expressed in dB, according to |
the following definition:

r=10log,o(c?(fr)/ o’ (fn)) (33)  Fig. 6. MRI slice corrupted with white Gaussian noise at a 0 dB level.

where ¢?(fr) is the squared variance of the original signahe data. In the following experiment, this assumption is
of Fig. 3, and wheres?(fv ) is the squared variance of theno longer valid. We consider brain volumes from different
added noise. After registration, we compute the SNR betwesubjects acquired by a PET imaging device. These brains

the transformed test datg{ fr } and the referencgr by exhibit not only size differences but also shape differences.
The goal now is to register these different brains to a common

rq = 101log;, (02 ( fr+ fNR) / reference (a subject selectedpriori), notwithstanding the
o2 (er + frg — Q{fT +fNT})). (34) fact that the dissimilarities in shape may introduce outliers

in the statistics of the difference between the reference and

Fig 5 th its of thi . £ W h the test volumes. Fig. 7 shows five unregistered slices from
Ig. 5 presents the results of this experiment. We emphasigg,q subjects, cut at the same nominal position in the

tha't, different from [5],.we do not' sgtlsfy ourselves W'ﬂbr‘jginal volumes. At the top left is the reference slice, and
estimates of the statistical uncertainties in the accuracy Sthe bottom right is the average of the 32 selected slices for

the match. Because we use the identical starting set of imaag%et of subjects. Fig. 8 shows the same configuration after

data for both test and reference, we know the frue error, ko)) registration to the reference volume has been performed

measured though Fhe Warping index introdgced at (32). blefore averaging.
Fig. 5 shows that its growth is close to being proportiona PET images are typically noisy, so we need to mask out

to the SNRr given in (3.3)1 In this same figure, we haVemost of the background in the image, which explains the
reported the standard deviationwmfacross runs; this Iaswaluedisappearance of streaks when comparing Fig. 7 to Fig. 8.

S a "‘?‘"d indicator of the dispersion of the measurements. VX@‘. the detailed outline of the mask influences the registration
experienced no outliers, even when the variance of the no

. . . E@curacy in a negligible way, the masking procedure can be
was as large as the signal variance (0 dB case). Fig. 6 S‘hoé'y(?remely crude (it does not matter if some background is
. . S ) rﬂ; esent or if some small amounts of brain are disregarded).
of noise. In this case, it is worth noting that, on average, MLAS the masks can be specified independent of the data,
still achieves registration within about a tenth of a pixel. Th|§n masking procedure can be used. Here, we applied a

accuracy comes at a cost, however: In the case of the ng| y lowpass Gaussian filter to the image, performed binary
e’?peT'me”tS OT th|s. schon, we have used the converge%gx_uoyd guantization, and then computed a pyramid in the
crlterlon. described in Sectlp n IV-C. Altogether, fer> 10 same way as for the data, masking out the values below the
.dB’ we find a convergence time comparable to t.he ease 2 Max—Lloyd threshold at each level. Regarding the success of
in Table IV. For NOISIEr IMages 'hoyv'ever, the time ngegad fRe registration, it is evident that most of the brain features
reagh Convergence Increases significantlyr at 0 dB, it is of interest are far better resolved in the registered than in
equivalent to the noiseless case = 8. the unregistered average volume, which are given at the
) ) lower right of Figs. 8 and 7, respectively. This indicates

C. Intersubject 3-D PET Brain Scans that our least-squares registration criterion is robust enough

In the previous experiments, we showed cases where thecope with deformations that cannot be modeled by an
deformation model (affine transformation) was consistent witiffine transformation. We note that these deformations are,
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Fig. 7. Unregistered slices and their average.

in fact, hard to capture globally; even when using a nonlineaase, can be applied without any modification to a 2-D case as
model with 105 parameters, nontrivial anatomical intersubjeekll. Finally, no restricting assumptions regarding the data are
differences may persist [47]. Regarding speed, a2288 x made, and no landmark estimation is required. This results in
21 pair of volumes is completely registered in about 3—4 mamn all-purpose, robust registration method. Without requiring
on a SPARC20, including 10 s spent in computing the finahy parameter tuning, the same algorithm has been applied to
transformation (that ignores interpolation outside the maslET data and to MRI and fMRI data, and to many other data
and less than half a minute spent in computing the two passts not reported here.
of volume pyramids (one pair for the data and one pair

for the masks). Without masking, the computation time of

a transformation at the finest level of the pyramid is half a

. APPENDIX
minute.

In this appendix, we derive the modified Mar-
guardt—Levenberg algorithm for the affine transformation
VIII. CONCLUSION introduced in Section 1lI-C (the treatment of the homomorphic
We have described a fully automatic registration algorithtiansformation case is similar, but would result in lengthier
that uses the original gray levels as elements in the feat@xpressions). We consider expression (21) and discretize
space, and considers a Euclidean least-squares criterion &egording to (15)
the simultaneous determination of a general 3-D affine trans-
formation and a linear change of contrast. We have introduced e
a new search strategy that takes advantage of a resolution pyra- X*(p) = W Z(CM {Arraa{Tan{fr(x:)}}}
mid and implements a variation of the Marquardt—Levenberg i=1
algorithm for nonlinear least-squares optimization. Great care — O { A {T_u{fr(xi)}}1}) (A1)
has been taken to ensure the consistency of all steps of the
procedure by using the same cubic spline representatianisere the summation is over all pixel values. We compute the
throughout. We have implemented this algorithm, presentgeadientdx?(p)/dAp, remembering from the discussion in
several experiments involving 2-D images and 3-D volumeSection IV-C thatAp = 0, and introduce it into expression
and were able to show good performance with respect ({b6)
accuracy and speed.
An attractive feature of this registration algorithm is that —19x%(p)  —e¥ N
it can easily incorporate priori knowledge by way of a  fi = - Ao, — A Z(fT (%)
(possibly multivalued) mask. Another attractive feature is that Pi A i=1
the general affine transformation can be constrained to be a B C_W{AA_I{T_h{fR(Xi)}}})aQAp{fT (xi)}
rigid-body transformation, with or without scaling, or even to OAp;,
a simple translation. Further, the method, developed for a 3-D (A.2)
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Explicitly, we have

(A.3)

Qap{fr(x)}
1+ Aaq,y Aaqs Aayg
= 6A’y fT ACEQ1 1 —|— Aa22 A023
Aag1 Aa32 1 + Aagg
r+ Az
X |y+ Ay
24+ Az
and, for example
9Qap{fr(x)}
0Azx
_ (afT ()
=e¢
3u1
u=Qap(x)
% 3u1
0Ax
ui=(1+Aa11)(z+Ar)+Aar2(y+Ay)+Aa1a(z4+Az)
n Ofr(u)
3u2
n=Qap(x)
% 3u2
0Ax
us=Aazi(z+Ax)+(1+Aaz)(y+Ay)+Aazs(z4+Az)
n Ofr(u)
3u3
n=Qap(x)
% aUg
0Ax
us=Aazi(z+Ar)+Aaz(y+Ay)+(1+Aazsz)(z4+Az)

(A.4)

Fig. 8. Registered slices and their average.

Remembering thahp = 0, the previous expression simplifies
into

0Qap{fr(x)} _ dfr(x) (A.5)

O0Azx Oz

We then proceed similarly for the other components. Finally,
the algorithm reads as follows.

1) The initial condition isp = po, Ap = 0.

2) Compute the inverse transformation of the reference
image Q-1 {fr(x)}.
Compute the resulting mean-square error using (22). Test
for convergence; if reached, then quit; else, continue at
step 3.

3) Test for a reduction of”. If reduced, then do step 3.1;
else, do step 3.2.

3.1) Decrease and updatep; = p.

3.2) Increase\.
4) Solve (14) for Ap. According to (23), updatep =
PooAp = (y+Av, AI+AA), b+ A(I+AA)ADb)T.
Continue at step 2.
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