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A Pyramid Approach to Subpixel
Registration Based on Intensity

Philippe Thévenaz, Urs E. Ruttimann, and Michael Unser,Senior Member, IEEE

Abstract—We present an automatic subpixel registration al-
gorithm that minimizes the mean square intensity difference
between a reference and a test data set, which can be either
images (two-dimensional) or volumes (three-dimensional). It uses
an explicit spline representation of the images in conjunction
with spline processing, and is based on a coarse-to-fine iterative
strategy (pyramid approach). The minimization is performed
according to a new variation (ML*) of the Marquardt–Levenberg
algorithm for nonlinear least-square optimization. The geometric
deformation model is a global three-dimensional (3-D) affine
transformation that can be optionally restricted to rigid-body
motion (rotation and translation), combined with isometric scal-
ing. It also includes an optional adjustment of image contrast
differences. We obtain excellent results for the registration of
intramodality positron emission tomography (PET) and func-
tional magnetic resonance imaging (fMRI) data. We conclude
that the multiresolution refinement strategy is more robust than
a comparable single-stage method, being less likely to be trapped
into a false local optimum. In addition, our improved version of
the Marquardt–Levenberg algorithm is faster.

Index Terms—Affine transformation, intramodal voxel-based
registration, Marquardt–Levenberg nonlinear least-squares opti-
mization, multiresolution, spline.

I. INTRODUCTION

T HE NEED for image registration arises in many fields
of research, most often in applications involving the

comparison of a series of images. Of interest may be the
detection of change, and the consolidation of data (or image
fusion), where different images of the same object need to be
brought into correspondence. Remote sensing and biomedical
imaging are typical application areas. Due to the recurrent
problem of registration, many solutions have been proposed
[1]–[3].

Our specific interest is the detection of significant dif-
ferences between biomedical images obtained from different
subjects, or from the same subject at different times. In
particular, this requires the three-dimensional (3-D) intramodal
registration of positron emission tomography (PET) or func-
tional magnetic resonance imaging (fMRI) images of the
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brain. In both applications, the changes to be detected are
very small (less than a tenth of the dynamic range for PET,
and even less for fMRI), demanding accurate registration.
This requirement rules out many of the methods involving
finite search techniques or quantized parameter spaces; only
subpixel methods are adequate. Furthermore, the difficulty of
creating a robust, yet precise, algorithm for properly selecting
landmarks in a 3-D grid rules out landmark-based registra-
tion, especially in PET images, since these are usually very
noisy and cluttered with artifacts (see Fig. 1). Therefore, we
prefer to explore methods that use the unaltered intensity
of all image pixels, thus exploiting effectively all available
information. Another aspect is the interpolation needed in
applying the transformation. While the majority of published
methods limit themselves to linear interpolation, we prefer
a higher interpolation order to minimize image blurring and
to achieve consistency in computing the spatial derivatives
required for the registration process. A final need to be met by
our registration method is versatility in selecting a deformation
model: In some applications, such as intrasubject registration, a
rigid-body transformation is appropriate, while in others, such
as intersubject registration, a more complicated deformation
model must be selected. Our deformation model considers
the combination of a full 3-D affine transformation and an
optional linear contrast change. We derive simpler models
by restricting the affine transformation to specific parameter
subsets, implementing combinations of rotation, translation
and isometric scaling.

The Marquardt–Levenberg nonlinear optimization algorithm
[4] is well suited for performing registration based on a
least-squares criterion [5], [6]. In this paper, we introduce
two extensions of this algorithm. First, we speed up its
execution by taking advantage of the particular structure
of our deformation model. Specifically, we reformulate the
optimization problem in such a way that we can precompute
most of the terms required for building the Hessian and the
gradient of the criterion, instead of having to reevaluate them
at every iteration as required in the traditional approach.
As a second extension, we cast Marquardt–Levenberg into
a multiresolution framework, using a coarse-to-fine iteration
strategy, and propagating estimates for one level of a resolution
pyramid from its prior level. Most iterations are carried
out at the coarsest level, where the amount of data is so
greatly reduced that the computational cost of one iteration
is negligible. Once convergence has been reached at any
particular level, a switch to a finer level is made, where
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Fig. 1. Slice of a typical PET image.

only a few iterations are needed because of near-optimal
initial conditions. For many types of optimizers, this strategy
for convergence is significantly faster than a single-stage
approach, but in the case of Marquardt–Levenberg (and our
extension thereof), the benefits are even greater because this
algorithm is superlinear and converges much faster than most
other minimization schemes so long as the initial estimate is
close to the correct solution. In addition, a multiresolution
strategy improves robustness, in the sense that it decreases the
likelihood of being trapped at a false local optimum.

A distinctive feature of our approach is that we consider
spline interpolation models that are superior to those typically
used for image registration (e.g., bilinear interpolation). By
increasing the order of the spline, we can get arbitrarily close
to the sinc interpolation model [7]. In practice, we use cubic
splines because they are already remarkably close to this ideal,
at a cost that is less than truncating and apodizing a sinc
kernel [5]. Our spline model is well suited for computing
image pyramids and for performing geometric transformations
at various resolutions. It also allows for an easy computation
of exact derivatives. By using the same model at each step,
we ensure that the overall algorithm is internally consistent.

The algorithm that we propose is entirely automatic. Since
it is pixel based, no landmarks are required. We have used
it successfully without modification—not even tuning—for
the registration of a whole variety of biomedical images
including PET, MRI, and fMRI data, and high-resolution
electron micrographs of virus particles.

A. Paper Outline

We begin with a short literature review in Section II.
In Section III, we describe our registration procedure and
include a rationale for the choice of our data-space, for the
choice of its corresponding objective criterion, and for the

choice of two transformations: a general affine transformation
and its restricted rigid-body version. In Section IV, we first
give a descriptive computational approach to the standard
Marquardt–Levenberg (ML) algorithm, and then explain how
to achieve further acceleration by tuning it to our specific
application, leading to a proposal for a new optimization
algorithm (ML*). We also propose a heuristic for deciding
when convergence has been reached. In Section V, we dis-
cuss the choice of the cubic spline interpolation model. In
Section VI, we discuss the use of a multiresolution pyramid
and its benefits. Finally, in Section VII, we provide several
application examples before we conclude in Section VIII.

II. L ITERATURE REVIEW

There are numerous ways to categorize the different im-
age registration methods [1], [3], [8]. Here, we adopt the
classification system of [1], which distinguishes three main
categories, each of which can be further subdivided. The first
category refers to the type of image feature considered, the
second addresses the search space, or equivalently the type
of transformation that is applied to the image, while the
last describes the search strategy. Following this scheme, we
give below a short discussion of the most important recent
registration methods.

A. Image Features

The image features used in a given algorithm have im-
portant practical significance because they often determine
what kind of images it is capable of registering. For example,
spatial coordinates (landmarks) are well adapted to intermodal
registration, where the purpose is to register two volumes
measuring different properties of an object. However, the
selection of landmarks is recognized to be a difficult prob-
lem [9], [10], whether done automatically [11] or manually
[12]. For many images, this is a serious drawback because
registration accuracy can be no better than what is achieved
by the initial selection of landmarks. For practical reasons,
the number and precision of landmark locations is usually
limited. Hence, spatial coordinates and geometric primitives
often oversimplify the data by being too sparse and imprecise.

By contrast, registration methods based on initial intensity
values can make effective use of all data available [13]; if
necessary, some binary masking or other weighting process
may be introduced to emphasize special features. Robustness
is controlled through the use of appropriate similarity measures
[14]–[16]. With the use of theoretical models, intensity-based
methods can produce continuous deformation fields [17].

B. Search Space

Geometric transformations can be divided into three cate-
gories: global, local, and displacement field. The first usually
involves matrix algebra, in which a single (small) matrix
characterizes the transformation of the entire image or vol-
ume; typical operations are translation, rotation, isotropic
or anisotropic scaling, bi- or trilinear transformations, and
quadratics [18]. The second category, sometimes calledelastic
mapping, allows the transformation parameters to exhibit
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spatial dependence. These parameters are often defined on
certain key points only, and interpolated on a region-by-region
basis [19], [20]. Finally, true displacement fields, sometimes
also calledoptical flow, result from the use of a (continuous)
functional optimization scheme, in which an independent
displacement is computed for each point in the image, with
constraints arising from somea priori regularization [17],
[21]–[23].

C. Search Strategy

Given a set of features and a parametric deformation, both
the criterion to optimize and the optimization algorithm itself
define the search strategy. The use of a least-squares criterion
jointly with geometric primitives is popular [24], although
it is sometimes replaced by more robust statistics, as those
generated while using a distance map (chamfer transform)
[25]. The least-squares criterion is also widely used with
intensity values as image features [5], although researchers
sometimes prefer more robust statistics, giving up maximum
likelihood parameter estimation (in the presence of Gaussian
white noise) in favor of assuring insensitivity to outliers [15].
The optimization algorithm reflects the choice of the criterion:
When the latter is correlative in nature, gradient-based methods
can be used. If the data are regularly spaced, such as in the
case of pixel intensity values, both Fourier [26], [27] and
wavelet approaches [17] are applicable. Several researchers
have explored the possibilities of stochastic, or finite-search
methods: dynamic programming [23], simulated annealing
[28], or genetic algorithms [20]. Exhaustive search has also
been investigated. With strong conditioning of the data, near
real-time registration [29] can be achieved.

D. Problem Addressed

An alternative way to classify registration is to look at the
type of problem it addresses. Again, three categories emerge:
data fusion, motion estimation, and the detection of significant
differences. In the first case, where noise reduction is often
the goal, one takes advantage of the availability of multiple
instances of supposedly identical data. In these instances,
registration allows the extraction of common features, for
example by averaging, or by more refined processes [30],
[31]. Data fusion also arises when one needs to find the
correspondence between two images acquired by two or more
modalities; applications typically involve remote sensing [32]
or medical imaging [33], [34]. In the context of motion
estimation (second category), the problem is to estimate the
displacement of a rigid object imaged on some background,
with the added challenge of potential changes of pose [35].
Since typical applications are video coding, target tracking and
autonomous vehicles, computational efficiency is an important
aspect of registration methods used in this context. The third
and last category encompasses the detection of significant
differences, where the challenge arises because the object itself
may change, aside from modifications of its orientation or its
illumination. A new problem then appears, due to the fact
that the registration process tries to align data that may be
intrinsically dissimilar. This last consideration has sometimes

led to robust registration methods using an internal criterion
insensitive to outliers [14]–[16]. After registration, the task
usually proceeds to detect dissimilar regions, given statistical
decision criteria with respect to type I and type II errors [36].

III. REGISTRATION PROCEDURE

A. Data Space

In this paper, we consider pixel intensity values as our image
features. This choice is appealing because it bypasses the
segmentation of data into geometric primitives, a notoriously
difficult problem for biomedical images. As mentioned in
Section II-A, the use of pixel intensity values facilitates the
inclusion of the entire informational content of the data.
Moreover, the role of the reference and of the test volume can
be exchanged at will. This allows one to check whether the
inversion of the estimated “forward” registration is consistent
with the estimated “backward” registration. This symmetry
property is not necessarily taken for granted with some al-
gorithms based on geometric primitives, for example, in [37].
Although raw intensity values are well suited to tasks like
the detection of change or intramodality registration, their
associated drawback is their lack of universality: They are
not well suited to the problem of intermodality registration,
a task in which one usually must resort to an intermediate
feature representation, for example their gradient [38] or their
histogram [33], [34], [39].

B. Criterion

Any automatic registration method requires the choice of an
objective criterion that measures the similarity of the test data
to the reference. As the optimization criterion, we select"2, the
integrated square difference of the intensity values, sometimes
named the residue. LetfR be the reference data andfT the
test data. Then, this criterion can be written as

"2 =

Z Z
fxg�Rq

(fR(x) �QpffT (x)g)
2 dx

= kfR(x) � QpffT (x)gk
2 (1)

where Qpffg is a transformation parametrized byp, and
whereq is the space dimension. Such a criterion lends itself
well to minimization with respect top, and is well understood.
In particular, this Euclidean dissimilarity measure is known
to be maximum likelihood if the noise is additive, white,
and Gaussian. Its drawback is a lack of robustness in the
presence of severe outliers (e.g., nonstationary noise), where
its minimum may become less pronounced. In the worst case,
outliers predominate and the parameterp for which "2 reaches
its minimum can be quite different fromp0, the minimum in
the noiseless case.

In medical images, outliers are always present, for example
in the case of two PET images of the same brain at different
functional states (certain brain areas are expected to display
different activity levels). However, we do not expect these
outliers to be dominant. In fact, the need for registration arises
because the differences between the two brain images are
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TABLE I
COMPOSITION RULES FOR TRANSLATION, AFFINE

TRANSFORMATION, AND CONTRAST CHANGE

likely to be extremely small and cannot be detected without
careful alignment [40].

C. Affine Transformation

As a first transformation of interestQpffg, we consider
the general affine transformation parametrized by a 3� 3
matrixA, by a translation vectorb and by a gray-level scaling
factor
. We include no gray-scale shift because it is virtually
always true in medical images that some level (typically the
background with value zero) has a physical interpretation, and
should not be changed. This global transformation covers any
combination of contrast change, translation, rotation around
any center, skewing, shearing, and scaling. For our purpose, it
is most convenient to decompose the transformation by using
several operators, namely, a translation operatorTb, an affine
operatorAA, and a contrast operatorC


8<
:
Tbff(x)g = f(x + b)
AAff(x)g = f(Ax)
C
ff(x)g = e
f(x)

: (2)

These operators are subject to the composition rules given in
Table I. Using (2), we can express our first transformation as

Qb;A;
ff(x)g = TbfAAfC
ff(x)ggg = e
f(Ax+b): (3)

D. Homomorphic Transformation

As an alternative, we propose a second global transfor-
mation with explicit restriction to the homomorphic case. It
can accommodate contrast change, translation, rotation, and
isometric scaling, but no skew or shear. To describe rotation
we select a set of three Euler anglesf'; �;  g and we let�
be our isotropic scaling parameter. Let us define the rotations

around the coordinate axes by
8>>>>>>>>>>><
>>>>>>>>>>>:

Ax(!) =

0
@
1 0 0
0 cos(!) � sin(!)
0 sin(!) cos(!)

1
A

Ay(!) =

0
@

cos(!) 0 sin(!)
0 1 0

� sin(!) 0 cos(!)

1
A

Az(!) =

0
@
cos(!) � sin(!) 0
sin(!) cos(!) 0

0 0 1

1
A

: (4)

One of many possible descriptions of a rotation matrixR by
Euler angles is (5), shown at the bottom of the page. Note
that the condition known asgimbals lock [41], where the
representation of the rotation in terms of Euler angles is not
unique, occurs far fromf'; �;  g = f0; 0; 0g. Also, one has
to take care of the order of operations in the inverse of the
previous rotation matrix

R�1('; �;  ) = Az(� )Ay(��)Ax(�') (6)

with

I = R�1('; �;  )R('; �;  ) = R('; �;  )R�1('; �;  ): (7)

We define the rotation operatorR';�; by

R';�; ff(x)g = f(Ax(')Ay(�)Az( )x);

'; �;  2
�
�
�

2
;
�

2

�
: (8)

We define the isotropic scaling operator by

S�ff(x)g = f(e�x): (9)

Considering translation, rotation, scaling, and contrast change,
we extend the composition rules of Table I as in Table II,
where the explicit composition of two spatial rotations
R'0;�0; 0 andR'00;�00; 00 involvesR';�; such that we obtain
(10), shown at the bottom of the next page. Finally, we can
express our homomorphic transformation by

Qb;�;';�; ;
ff(x)g = TbfS�fR';�; fC
ff(x)gggg

= e
f(e�R('; �;  )x+ b): (11)

It is important to note that all the proposed operators are
distributive with respect to addition, a property that we shall
use later in this paper, as follows:

Qpff(x) + g(x)g = Qpff(x)g +Qpfg(x)g: (12)

R('; �;  ) = Ax(')Ay(�)Az( )

=

0
@

cos(�) cos( ) � cos(�) sin( ) sin(�)
cos(') sin( ) + sin(') sin(�) cos( ) cos(') cos( ) � sin(') sin(�) sin( ) � sin(') cos(�)
sin(') sin( ) � cos(') sin(�) cos( ) sin(') cos( ) + cos(') sin(�) sin( ) cos(') cos(�)

1
A

(5)
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TABLE II
COMPOSITION RULES FOR TRANSLATION, ROTATION, SCALING, AND CONTRAST CHANGE

IV. OPTIMIZATION

We propose to solve@"2(p)=@p = 0 with a new op-
timization scheme that we name ML*. It is a modification
of the traditional Marquardt–Levenberg, an iterative gradient-
based algorithm for nonlinear least-squares optimization prob-
lems [4]. In this section, we first present ML in its original
form, and then proceed to show how it can be acceler-
ated.

A. Traditional Marquardt–Levenberg (ML)

Fig. 2 depicts the traditional ML operative outline. At each
step, fT has to undergo the transformationQp before it is
compared tofR. More specifically, updating the actual set
of M parameterspt requires the computation of an additive
update component�pt satisfying

pt+1 = pt + �pt (13)

with

MX
l=1

�kl�pl = �k (14)

where[�kl]M�M is derived through the Hessian matrix from
the curvature matrix and where[�k]M�1 is proportional to the
gradient of the residue. Approximation by a finite sum of the
criterion given in (1) leads to

"2 �= �2(p) =
1

N

NX
i=1

(fR(xi) �QpffT (xi)g)
2 (15)

whereN is the number of pixels in the domain of interest and
xi the coordinate of each pixel. We have

�k =
�1

2

@�2(p)

@pk

=
1

N

NX
i=1

(fR(xi)� QpffT (xi)g)
@QpffT (xi)g

@pk
(16)

and

akl =
1

2

@2�2(p)

@pk@pl
=

1

N

NX
i=1

�
@QpffT (xi)g

@pk

@QpffT (xi)g

@pl

� (fR(xi)� QpffT (xi)g)
@2QpffT (xi)g

@pk@pl

�
: (17)

For reasons given in [42], the second derivative terms in (17)
are usually ignored. Let us define

bkl =
1

N

NX
i=1

@QpffT (xi)g

@pk

@QpffT (xi)g

@pl
: (18)

Using (18), we characterize (14) by�
�kl = bkl(1 + �) k = l
�kl = bkl k 6= l

(19)

where the free parameter� � 0 determines degree to which
the update�pt conforms to a Newton method or to a steepest
gradient approach. The characteristic of ML is to adapt� at
each iteration in such a way that the more successful the
previous updates�pt have been, the more Newton-like the
next update�pt+1 will be. Conversely, the less successful,
the more gradientlike the next update will be.

8>>>>>>>><
>>>>>>>>:

�1 = cos('0) sin(�00) + sin('0) cos(�00) sin( 00)
�2 = sin('0) sin(�00) � cos('0) cos(�00) sin( 00)
�3 = cos('00) cos( 00)� sin('00) sin(�00) sin( 00)
�4 = cos('00) sin( 00) + sin('00) sin(�00) cos( 00)
sin(�) = �1 cos(�0) + sin(�0) cos(�00) cos( 00)

sin( ) = sin( 0)
cos(�) (cos(�

0) cos(�00) cos( 00) � �1 sin(�
0))� �2

cos( 0)
cos(�)

sin(') = cos(�0)
cos(�) (cos('

0) sin('00) cos(�00) + �3 sin('
0))� �4

sin(�0)
cos(�)

:

(10)



32 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 1, JANUARY 1998

Fig. 2. Outline of the registration algorithm.

B. Modified Marquardt–Levenberg (ML* )

As both the vector[�k] and the matrix[bkl] (precursor to
[�kl]) depend uponp, and asp changes from iteration to
iteration, the standard implementation of ML (as presented
above) requires that[�k] and [�kl] be computed explicitly at
each iteration. For our application, we show how to bypass
these steps and save the associated computational cost. The
general strategy is as follows. Instead of trying directly to
find parametersp1 such thatkfR � Qp1

ffTgk2 < kfR �

Qp0
ffT gk

2, we try to find p2 such that kQ
p
�1

0

ffRg �

Qp2
ffT gk

2 < kQ
p
�1

0

ffRg � fTk
2. This new strategy is

superior because the gradient of the criterion"2 with respect
to p2 is now independent of the initial guessp0 and is
computed about a fixed point in the parameter space. Using
our definitions of the transformation operators and applying
appropriate integration variable changes, it is easy to derive
the following relations in 3-D:

kf(x)k2 =

Z Z
fxg�R3

(f(x))2 dx;

8>>>><
>>>>:

kTbff(x)gk2 = kf(x)k2

kAAff(x)gk2 = 1
jAjkf(x)k

2

kS�ff(x)gk
2 = e�3�kf(x)k2

kR';�; ff(x)gk2 = kf(x)k2

kC
ff(x)gk2 = e2
kf(x)k2:

(20)

Using the relations in (20) and the results of Tables I, II,
and the distributive property (12), we can now write several
equivalent forms of the criterion (1) for the affine case

"2 =
e2


jAj
kC�
fAI+�AfT�bffT (x)ggg

� C�
fAA�1fT�bffR(x)gggk
2 (21)

"2 =
e2(
+�
)

jA(I+�A)j



fT (x) �C�
��


�
A(I+�A)�1A�1f

T�b�A(I+�A)�bffR(x)gg
	

2 (22)

"2 = kTb+A(I+�A)�bfAA(I+�A)f

C
+�
ffT (x)ggg � fR(x)k
2 (23)

where the update in (13) is�p = (�
;�A;�b)T for the

affine case. For the homomorphic case, we have

"2 = e2
�3�


C�
fR�';��;� fS��fT�bffT (x)gggg

� C�


�
R�1
';�; fS��fT�bffR(x)ggg

	

2 (24)

"2 = e2(
+�
)�3(�+��)


fT (x)

� C�
��


��
R�1
�';��;� �R�1

';�; 

�
fS�����f

T�b�e�+��R(';�; )R(�';��;� )�bffR(x)ggg
	

2

(25)

"2 = kTb+e�+��R(';�; )R(�';��;� )�bf

S�+��f(R';�; �R�';��;� )f

C
+�
ffT (x)gggg � fR(x)k
2: (26)

Next, we show why these equivalent forms are useful. For
example, in the affine case, finding a minimum to (21) with
respect to�p = (�
;�A;�b)> (incremental update) is
equivalent to writing (23) with�p = 0 and then minimizing
this equation with respect top. This yields�p according to
(13) and corresponds to the standard ML. Minimizing (21)
over�p instead of the direct minimization of (23) overp is
advantageous because the curvature matrix[bkl] needs to be
computed only once, at the parameter value�p = 0. The
same is true for the derivatives(@fT =@�p)j�p=0. In short,
ML solves(@"2(q)=@q)jq=p = 0 in an iterative fashion, while
ML* solves (@"2(p + q)=@q)jq=0 = 0. In the former case,
the point at which"2 is expanded into a Taylor series changes
from one iteration to the next, while, in the latter case, this
point is fixed.

After having adapted (14) for the minimization of (21) with
respect to�p = 0+�p (see Appendix), one iteration of ML*
runs as follows: Solve (14) and use (22) withp = pt and
�p = �pt to obtain a new estimate"2(pt+1). Update� by
the standard ML procedure. Computept+1 using the updating
rules found in (23), test for convergence and go to the next
iteration if necessary. Otherwise, the final transformation is
given by (23).

Applying these operations to the homomorphic case is
straightforward: Replace (21), (22) and (23), respectively,
by (24), (25), and (26). More precisely, write the set
of equations minimizing (24) and solve them by using
(14), which yields a potential update given by�p =
(�b;��;�';��;� ;�
)>. The next step is to transform
the reference imagefR according to (25). This equation
describes how to combine the old parametersp and the
update�p when applied tofR (e.g., the rotation would be
given by the composition(R�1�';��;� � R�1

';�; 
), the scaling

would be given by(�� � ��), etc.). Then, evaluate the
residue between the test imagefT and the inverse transformed
reference imageQp�1ffRg. This residue needs to be scaled
by e2(
+�
)�3(�+��) to yield the correct value"2 for the
criterion (1), or, equivalently, (26). Based on the comparison
between this new"2 and the best one observed so far, and
applying the considerations of Section IV-C, decide whether
the potential update should be rejected or not. If the iteration is
successful, then updatep according to (26). It is this equation
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which describes how to combine the old parametersp and
the update�p when applied tofT (e.g., the rotation would
be now given by the composition(R';�; �R�';��;� ), the
scaling would be given by(�+��), etc.). When convergence
is reached, transform the test imagefT according to (26) with
the best set of parameters observed so far.

In summary, we update the inverse transformationQp�1
that is applied tofR instead of the direct transformation
Qp that is applied to fT . Note that the optimization
process requires explicit knowledge of the partial derivatives
@fT (Qp(x))=@p = (@fT (Qp(x))=@x)(@Qp(x)=@p), where
fT (Qp(x)) is an equivalent notation forQpffT (x)g. Given
our transformation (either affine or homomorphic), we
determine analytically the dependence@Qp(x)=@p from (21)
or (24), respectively (see Appendix), while we compute the
spatial gradient@fT (Qp(x))=@x from the coefficients of the
exact cubic spline fit to the data using the digital filtering
techniques described in [43], [44].

C. Convergence

We consider three concurrent criteria for deciding when to
stop the iteration process. The first is self-evident: We stop
when a near-perfect match is met, that is, when�2 � T1,
where T1 is somea priori threshold. The second uses the
observed relative gain��2=�2 at each successful iteration
step: We declare convergence to be reached whenever this
gain is below anothera priori thresholdT2. The third one
usesj�pk=pkj, the relative change of parameter values at each
iteration step: When at least one of the parameters is still
changing, we continue; but when all are no longer changing,
we stop. If any parameterpk happens to be zero, or near zero,
we substitutej�pk=pkj � T3 by a similar, although possibly
less effective criterion extracted from some of the parameters
of the algorithm. Specifically, we usejbkk�pk=�kj � T 0

3,
which behaves asymptotically like1=� for increasing�. If,
by mishap, or because an optimum has been nearly reached,
even the gradient�k is too small for this last criterion to be
applicable, we iterate anyway and rely on the two previous
criteria to eventually determine that convergence has been
really reached.

D. Practical Issues

We use the technique of singular value decomposition for
the solution of the system of linear equations in (14). Apart
from robustness, its advantage is that it allows for a reduction
in rank of the matrix[�kl]. Such reduction may arise, for
example, when a parameter is forced to an arbitrarily fixed
value. This last feature allows to tune the whole algorithm
by independently switching on or off the optimization of any
of the parameters. Typically, partial optimization is useful
when dealing with images instead of volumes, because the
parameters needed for the description of a two-dimensional
(2-D) transformation are a subset of those needed for 3-D. For
example, the rotation of an image is equivalent to the rotation
of a volume with' = 0; � = 0, with  as the only free
rotation parameter.

There are two points to be addressed regarding our formu-
lation of ML*. The first concerns the substitution of criterion
(1) by its discrete version (15). At first sight this seems
unnecessary because we have at our disposal a continuous
model of the data (in our case, cubic spline polynomials), but
it is nevertheless beneficial both in a practical and a theoretical
sense. The practical benefit is an obvious computational sim-
plification: The explicit integration of splines requires more
operations than does a simple addition of terms. In any case,
the discrete version is very close to the continuous one [6].
The theoretical benefit arises from the fact that the data set
is finite: In (1) we perform integration over the entire domain
of real numbers (L2 norm). In practice, however, the domain
is always limited by the size of the image. By introducing a
finite domain of integration, the Leibnitz rules for derivatives
are required in the computation of@"2(p)=@p, which then
becomes explicitly dependent on the integrand in (1), evaluated
at the borders. This last requirement is undesirable; intuitively,
one would prefer to see all the contributions in (1) to be
equally weighted, which is exactly what the discrete version
(15) does. In fact, the discrete implementation allows for a
controlled weighting of the measurements. For example, the
original ML formulation uses weights inversely proportional
to the measurement variance. In our application, we use binary
masking whenever convenient, which corresponds to unitary
or infinite variance. The mask is transformed in the same way
as the data (albeit with nearest-neighbor interpolation).

The second point concerns the validity of the relations in
(20) (involving for exampleAA andS�), which hold formally
only if one considers an infinite domain of integration. We
argue that ML* holds even under finite data (or masking),
provided that at least one of the two following conditions is
satisfied: either the scaling factor� or the determinantjAj
is close enough to unity, or sufficient data are available. In
the latter case, convergence will occur for the same values in
p, whether the criterion"2 is expressed in the regular (ML)
or in the modified (ML*) form. In most applications, both
conditions are usually satisfied.

V. INTERPOLATION MODEL

Interpolation is a model-based process that allows one to
recover the value of a function from a given set of its samples,
within a given abscissa range. Here, we have chosen to make
use of a separable model because such a model is easy to
manipulate. It is given by

f(x) =
X
k2Zq

c(k)

qY
i=1

'(xi � ki) (27)

where c(k) is a discrete set of coefficients and'(x) is a
continuous synthesis function. For example, [45] has proposed
to use'(x) = sinc(x). This choice limitsf(x) to being a
finite-bandwidth function with coefficients given byc(k) =
f(k). We prefer to use'(x) = �(n)(x), where �(n) is
a symmetrical spline of degreen. In this case,f(x) is a
piecewise polynomial function, and the model is especially
easy to manipulate both analytically and numerically [43].
In particular, the set of coefficientsc(k) can be computed
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efficiently by separable recursive linear filtering. This spline
model, although it uses a synthesis function of finite support,
is equivalent to a model that uses a cardinal spline of the
same degreen, which has an infinite support forn � 2. As
the degree of the cardinal spline tends to infinity, Shannon
interpolation and spline interpolation become equivalent [7].

In this paper, we selectn = 3 because it has several
advantages. First, a cubic cardinal spline is already quite
close to a sinc function, at a computational cost that is lower
than would be required within the traditional approach of
truncation and apodization. In this view, it is well suited to
processing data that are approximately bandlimited by nature
or by construction. Second, even though a cubic cardinal
spline is of infinite extent, it does not introduce excessive
ringing, which makes it an attractive candidate in this type of
applications. Third, it offers the lowest possible cost at which
we can implement ML* in a consistent fashion. This follows
because we need to compute the gradient of the image with
respect to the spatial coordinates sampled at the grid points
in order to compute the gradient of"2 with respect to the
registration parameters. Recall that, for splines of degree zero
this gradient is undefined at the sampling points, while it is
ill-defined for splines of degree one (the data would have to
be sampled at the discontinuities). The use of quadratic splines
would suffice, but it introduces a computational cost exactly as
high as in the case of our choice, degree three, or�(3), which
has been shown to be a good compromise between quality and
speed for a variety of other tasks as well.

VI. PYRAMIDS

A. Multiresolution Processing

We take advantage of the iterative nature of the algorithm
by introducing a change of resolution between one or another
of the iterations. For practical purposes, the quasi-Newtonian
optimization method that we use can converge in very few
steps (ideally, one step) if the previous estimate is sufficiently
good. This is often the case for all but the coarsest resolution
level. Consequently, most of the iterations are required at the
coarsest level where, due to the data decimation inherent in
the pyramid, the number of pixels is small. This results in a
considerable savings of computation time.

A second very important advantage of using a resolution
pyramid is that the smoothness conditions imposed by the
polynomial splines tend to regularize the optimization problem
by causing the surface"2(p) to become smoother at coarser
resolutions. The antialiasing filters involved in the downsam-
pling effectively remove more and more of the image detail
and noise. As a result, the algorithm achieves first a registration
with respect to the large-scale features in the data, and then
only makes small corrections for progressively finer details.
For most images, it is very likely that the approximate location
of the global optimum will not be missed by the solution at
the coarsest level, whereas an attempt to find the solution by
considering the finest level only could more easily become
trapped into a false local minimum. This is important because

we make no use of stochastic procedures that would facilitate
the escape from local minima.

We construct a dyadic pyramid by starting at some actual
(fine) level, of which we compute a coarser representation
for the next level. We take advantage of the spline model
to minimize in a least-squares sense the difference between
the fine and the coarse representations, and we then proceed
recursively. This implementation of the pyramid construction
is based on [46], using cubic splines.

B. Consistency

We feel that it is important to enforce the processing of
data in a way that is internally consistent. In particular, there
are four main tasks where this applies. The first one is the
computation of a pyramid. Here, we apply the technique
presented in [46] , which provides a sequence of fine-to-coarse
approximations that are optimal in a least-squares sense. The
second task is the computation of derivatives; as discussed
in Section V, we have selected a model with an order high
enough to enable exact computation. Note that, in the case
of the standard ML, the requirements for the spline order are
less severe: There, we perform the derivative computations
at many points in the parameter space, thus sampling the
gradient values at points in data space that do not lie exactly
on the grid. It follows that inaccuracies tend to even out in
the course of optimization, and the problem of ill-defined
gradient arises infrequently. By contrast, in the ML* case,
we perform computations once only, at the fixed-point of
identity in the parameter space, which requires to sample the
gradient exclusively on the grid. This allows the consideration
of a spline of degree one as a possible model for ML,
while barring it for ML*. The third task is the application of
geometric transformations during the course of optimization;
there, we use a resampling scheme in order apply the discrete
criterion (15) exactly, even though some geometric scaling
might be present in the transformation. Finally, the last task
is, strictly speaking, not within the scope of registration, for it
consists in the production of a transformed test image once the
transformation parameters have been determined. However, in
practice, this operation is often desired, and we include it for
completeness. For this last transformation, we again select the
model used during optimization, and again resample because
we want to produce the very data that minimizes the selected
criterion. Supposing the registration has been successful, any
additional process (e.g., change of model order, antialiasing
filtering, etc.), would necessarily result in an output that
no longer minimizes the criterion for which the registration
parameters have been determined.

C. Propagation of Parameters Between Levels

Since our method is implemented by a multiresolution
approach, the derivatives and the curvature matrices have to
be computed at each resolution level, and the transformation
parameters need to be propagated between levels. To illustrate
this propagation, consider an initial geometric transformation
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TbfAAff(x)gg given by
8<
:
y1 = b1 + a11x1 + a12x2 + a13x3
y2 = b2 + a21x1 + a22x2 + a23x3
y3 = b3 + a31x1 + a32x2 + a33x3:

(28)

Consider now the scale factors(s1; s2; s3) that correspond to
the conversion from one resolution level to the next; typically,
we havesi 2 f12 ; 1; 2g. Applying these scale factors, one
obtains a new, equivalent transformationTb0fAA0ff (x0)gg
as in 8<

:
y01 = b01 + a011x

0

1 + a012x
0

2 + a013x
0

3

y02 = b02 + a021x
0

1 + a022x
0

2 + a023x
0

3

y03 = b03 + a031x
0

1 + a032x
0

2 + a033x
0

38<
:
x01 = s1x1
x02 = s2x2
x03 = s3x3

;

8<
:

y01 = s1y1
y02 = s2y2
y03 = s3y3:

(29)

These four systems of three equations are satisfied by
8<
:
b01 = s1b1
b02 = s2b2
b03 = s3b3

;

8<
:
a011 = a11 a012 =

s1
s2
a12 a013 =

s1
s3
a13

a021 =
s2
s1
a21 a022 = a22 a023 =

s2
s3
a23

a031 =
s3
s1
a31 a032 =

s3
s2
a32 a033 = a33:

(30)

The last equations show how a description of the geometric
transformation is carried from one level of the pyramid to
the next. In general, the relations in Table I or Table II are
needed to determine the additional translation correction that
may arise when the coordinate system is displaced during a
change of level.

VII. EXPERIMENTS

A. Ideal Case

We begin our series of experiments with an ideal case:
The test and reference sets are identical except for an affine
transformation, and no noise is present. We consider the
256 � 256 image of Fig. 3 instead of a volume. Our goal
here is to compare ML to ML*, both in terms of precision
and speed. For the comparison to be fair, we have modified
the convergence criterion presented at Section IV-C so that a
preset number of iterationsni are executed at each leveli in
the pyramid, specifying the same number for ML and ML*.
Let i = 0 designate the finest level in the pyramid, and set
ni+1 = 2ni; i � 0. This strategy ensures that a sufficient
number of iterations are performed at the coarsest level, as the
initial conditions may be far from optimal at this particular
level. At finer levels, the number of iterations can be sharply
reduced because only a few iterations are necessary when the
initial conditions have been properly estimated. Lett0 be the
time spent on a single iteration at the finest level. Ignoring
the computational overheads (e.g., establishing the resolution
pyramid, or computing the�-spline coefficients, or computing
the final transformation), we predict a total execution timet

to be given by

t =
N�1X
i=0

n0t02
(1�q)i =

n0t0
�
1� 2(1�q)N

�
1� 2(1�q)

(31)

Fig. 3. MRI slice.

whereN is the number of levels in the pyramid andq the
space dimension. In particular, for an infinite pyramid and for
2-D images we havet = 2n0t0. For 3-D volumes we have
t = 4

3n0t0.
In order to test this prediction, we first generate a series

of random transformations, each consisting of a rotation with
a uniformly distributed angle�0 2 [� �

36 ;
�
36 ], and with an

independent and uniformly distributed translation of each
coordinate�0 2 [�2:5; 2:5]. In order to remove experimental
bias, we apply this transformation twice to the image of Fig. 3;
a first application of the transformation inverse produces
the test imagefT , and a second application of the direct
transformation produces the reference imagefR. With this
methodology, neither ML nor ML* algorithm is favored. Also,
the transformation to recover, being the square of the initial
random transformation, has twice the range of the original
random transformation:� 2 [� �

18 ;
�
18 ] and � 2 [�5; 5]. In

addition, we apply these transformations by resampling a high-
order spline model(�(7)). This is essentially equivalent to
sinc interpolation. We then attempt to register the test image
fT to its referencefR, which produces an estimated set of
parameters~p. Note that we do not try to recover the rotation
exactly; rather, we search for a general affine transformation.
We generated 100 random transformations per experiment and
pooled the results.

Fig. 4 shows the behavior of the ML* algorithm when we
use five levels and two iterations at the finest level. The two
curves show the time spent at each level, in seconds on a
Sparc20, and the residue between the transformed test image
and the reference after convergence within a given level. This
last value is computed on the full-scale version of the images.
We see that, although the number of iterations is halved by
going from one level of the pyramid to the next, the time spent
at each level nevertheless increases sharply. We also see that
the minimization algorithm performs well, reducing the initial
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Fig. 4. Pooled performance of 100 runs of ML* withN = 5 andn0 = 2.

TABLE III
MULTIRESOLUTION BEHAVIOR OF THE ALGORITHMS

mean square error by more than three orders of magnitude
along the way.

Our next step is to examine the registration performance
from a geometric point of view. To this end, we introduce
a warping index$ (an average geometric error), which we
compute by comparing the true transformation to its estimate.
In general, the true transformation is unknown (if it were
known, there would be no need for registration). However,
in our experiment design, we can compare the estimated
transformation~p and the true transformationp on the basis of

$ =
1

Card(V )

X

x2V

kp(x)� ~p(x)k: (32)

Table III presents the pooled results of 100 registration experi-
ments per algorithm, using the same set of random transforma-
tions for each. The three algorithms that we consider are ML1
(standard Marquardt–Levenberg, bilinear interpolation), ML3
(standard Marquardt–Levenberg, bicubic interpolation), and
ML*3 (modified Marquardt–Levenberg, bicubic interpolation).
Here, by standard ML, we mean Marquardt–Levenberg in a
multiresolution framework.

In terms of registration accuracy, we conclude from
Table III that ML3 and ML*3 are essentially equivalent,
while the accuracy obtained by ML1 is about fivefold lower.
Two mechanisms explain this difference. First, within a given
level of the pyramid, the accuracy is principally dependent
on the resampling precision or, equivalently, the model order.
It is also influenced by the definition of the derivatives used
for determining the gradient vector and the Hessian matrix.
This last issue is less important in the case of ML because the
derivatives are computed as many times as there are iterations.

TABLE IV
DEPENDENCE ON THENUMBER OF ITERATIONS

This tends to average out their inaccuracies. However, in the
case of ML*, an accurate definition of the derivatives is crucial
because they are computed only once. The second mechanism
is important when switching from one level of the pyramid to
the next. There, a high-order model ensures better consistency
in locating the optima across levels because less aliasing is
present in the coarser pyramid levels as compared to a lower
order model. This results in a better propagation of the initial
conditions, which means that the superlinear convergence
mode of the Marquardt–Levenberg algorithm is reached earlier
with high-order models than with low-order ones.

In terms of speed, the more iterations, the more we expect
ML* to be faster than ML. Comparing similar models (ML3
and ML*3), we see that this advantage shows up clearly even
for as few as two iterations. Although we had left out any
impact of the computational overheads in our prediction (31),
we see that the relationt = 2n0t0 is in rough agreement with
the experimental data. Clearly, a substantial amount of time
is devoted to iterations at the finest scale. For this reason,
it is very important to have excellent starting conditions for
this last level of the pyramid, so that a small number of
iterations is sufficient to reach convergence. If these good
starting conditions are indeed available, then the super linear
property of ML or ML* will assure even further benefits. For
this reason, we feel it is especially important to make use of
high-order models right from the beginning. If time is critical,
one should at least use such models for the initial levels of
the pyramid, where they come cheap, and perhaps switch to a
lower model for the final level (this approach is not pursued
here).

Table IV presents the results of varying the number of
iterations (only the results after the final level are given). Here
again, each entry results from the pooling of 100 experiments.
In this table, we see that, forn0 � 2, the further iterations bring
no marked increase in registration accuracy, while it incurs an
appreciable lengthening of computation time. We explain this
behavior by the fact that neither ML nor ML* is a stochastic
algorithm; there is no possible escape from a local minimum.
Once such a local minimum has been found, these algorithm
will stay there; no matter how many additional iterations are
performed, the accuracy will not increase.

In summary, we conclude from these experiments that the
most economical way to achieve high registration accuracy is
to increase the interpolation order, rather than to increase the
number of iterations.

B. Noisy Case

Here, we perform essentially the same experiments as in the
previous section, but we add independent realizations of white
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Fig. 5. Pooled performance of 100 runs of ML* with noise added.

Gaussian noise to both the reference and test images before
their registration. We report the amount of added noise as a
signal-to-noise ratio (SNR)r expressed in dB, according to
the following definition:

r = 10 log10(�
2(fR)=�

2(fN )) (33)

where�2(fR) is the squared variance of the original signal
of Fig. 3, and where�2(fN ) is the squared variance of the
added noise. After registration, we compute the SNR between
the transformed test dataQffT g and the referencefR by

rQ = 10 log10
�
�2
�
fR + fNR

��

�2
�
fR + fNR � Q

�
fT + fNT

	��
: (34)

Fig. 5 presents the results of this experiment. We emphasize
that, different from [5], we do not satisfy ourselves with
estimates of the statistical uncertainties in the accuracy of
the match. Because we use the identical starting set of image
data for both test and reference, we know the true error, as
measured though the warping index$ introduced at (32).
Fig. 5 shows that its growth is close to being proportional
to the SNRr given in (33). In this same figure, we have
reported the standard deviation of$ across runs; this last value
is a valid indicator of the dispersion of the measurements. We
experienced no outliers, even when the variance of the noise
was as large as the signal variance (0 dB case). Fig. 6 shows
the original image of Fig. 3, corrupted by exactly this amount
of noise. In this case, it is worth noting that, on average, ML*
still achieves registration within about a tenth of a pixel. This
accuracy comes at a cost, however: In the case of the noisy
experiments of this section, we have used the convergence
criterion described in Section IV-C. Altogether, forr � 10
dB, we find a convergence time comparable to the casen0 = 2
in Table IV. For noisier images however, the time needed to
reach convergence increases significantly; atr = 0 dB, it is
equivalent to the noiseless casen0 = 8.

C. Intersubject 3-D PET Brain Scans

In the previous experiments, we showed cases where the
deformation model (affine transformation) was consistent with

Fig. 6. MRI slice corrupted with white Gaussian noise at a 0 dB level.

the data. In the following experiment, this assumption is
no longer valid. We consider brain volumes from different
subjects acquired by a PET imaging device. These brains
exhibit not only size differences but also shape differences.
The goal now is to register these different brains to a common
reference (a subject selecteda priori), notwithstanding the
fact that the dissimilarities in shape may introduce outliers
in the statistics of the difference between the reference and
the test volumes. Fig. 7 shows five unregistered slices from
several subjects, cut at the same nominal position in the
original volumes. At the top left is the reference slice, and
at the bottom right is the average of the 32 selected slices for
a set of subjects. Fig. 8 shows the same configuration after
3-D registration to the reference volume has been performed
before averaging.

PET images are typically noisy, so we need to mask out
most of the background in the image, which explains the
disappearance of streaks when comparing Fig. 7 to Fig. 8.
As the detailed outline of the mask influences the registration
accuracy in a negligible way, the masking procedure can be
extremely crude (it does not matter if some background is
present or if some small amounts of brain are disregarded).
As the masks can be specified independent of the data,
any masking procedure can be used. Here, we applied a
very lowpass Gaussian filter to the image, performed binary
Max–Lloyd quantization, and then computed a pyramid in the
same way as for the data, masking out the values below the
Max–Lloyd threshold at each level. Regarding the success of
the registration, it is evident that most of the brain features
of interest are far better resolved in the registered than in
the unregistered average volume, which are given at the
lower right of Figs. 8 and 7, respectively. This indicates
that our least-squares registration criterion is robust enough
to cope with deformations that cannot be modeled by an
affine transformation. We note that these deformations are,
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Fig. 7. Unregistered slices and their average.

in fact, hard to capture globally; even when using a nonlinear
model with 105 parameters, nontrivial anatomical intersubject
differences may persist [47]. Regarding speed, a 128� 128�
21 pair of volumes is completely registered in about 3–4 min
on a SPARC20, including 10 s spent in computing the final
transformation (that ignores interpolation outside the mask),
and less than half a minute spent in computing the two pairs
of volume pyramids (one pair for the data and one pair
for the masks). Without masking, the computation time of
a transformation at the finest level of the pyramid is half a
minute.

VIII. C ONCLUSION

We have described a fully automatic registration algorithm
that uses the original gray levels as elements in the feature
space, and considers a Euclidean least-squares criterion for
the simultaneous determination of a general 3-D affine trans-
formation and a linear change of contrast. We have introduced
a new search strategy that takes advantage of a resolution pyra-
mid and implements a variation of the Marquardt–Levenberg
algorithm for nonlinear least-squares optimization. Great care
has been taken to ensure the consistency of all steps of the
procedure by using the same cubic spline representations
throughout. We have implemented this algorithm, presented
several experiments involving 2-D images and 3-D volumes,
and were able to show good performance with respect to
accuracy and speed.

An attractive feature of this registration algorithm is that
it can easily incorporatea priori knowledge by way of a
(possibly multivalued) mask. Another attractive feature is that
the general affine transformation can be constrained to be a
rigid-body transformation, with or without scaling, or even to
a simple translation. Further, the method, developed for a 3-D

case, can be applied without any modification to a 2-D case as
well. Finally, no restricting assumptions regarding the data are
made, and no landmark estimation is required. This results in
an all-purpose, robust registration method. Without requiring
any parameter tuning, the same algorithm has been applied to
PET data and to MRI and fMRI data, and to many other data
sets not reported here.

APPENDIX

In this appendix, we derive the modified Mar-
quardt–Levenberg algorithm for the affine transformation
introduced in Section III-C (the treatment of the homomorphic
transformation case is similar, but would result in lengthier
expressions). We consider expression (21) and discretize
according to (15)

�2(p) =
e2


jAj

NX

i=1

(C�
fAI+�AfT�bffT (xi)ggg

� C
�
fAA�1fT�bffR(xi)ggg)

2 (A.1)

where the summation is over all pixel values. We compute the
gradient@�2(p)=@�p, remembering from the discussion in
Section IV-C that�p = 0, and introduce it into expression
(16)

�k =
�1

2

@�2(p)

@�pk
=

�e2


jAj

NX

i=1

(fT (xi)

�C
�
fAA�1fT�bffR(xi)ggg)

@Q�pffT (xi)g

@�pk
:

(A.2)
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Fig. 8. Registered slices and their average.

Explicitly, we have

Q�pffT (x)g

= e�
fT

0
@
0
@1 +�a11 �a12 �a13

�a21 1 +�a22 �a23
�a31 �a32 1 + �a33

1
A

�

0
@x+�x
y +�y
z +�z

1
A
1
A (A.3)

and, for example

@Q�pffT (x)g

@�x

= e�


 
@fT (u)

@u1

�����
u=Q�p(x)

�
@u1

@�x

�����
u1=(1+�a11)(x+�x)+�a12(y+�y)+�a13(z+�z)

+
@fT (u)

@u2

�����
u=Q�p(x)

�
@u2

@�x

�����
u2=�a21(x+�x)+(1+�a22 )(y+�y)+�a23(z+�z)

+
@fT (u)

@u3

�����
u=Q�p(x)

�
@u3

@�x

�����
u3=�a31(x+�x)+�a32 (y+�y)+(1+�a33)(z+�z)

!
:

(A.4)

Remembering that�p = 0, the previous expression simplifies
into

@Q�pffT (x)g

@�x
=

@fT (x)

@x
: (A.5)

We then proceed similarly for the other components. Finally,
the algorithm reads as follows.

1) The initial condition isp = p0; �p = 0.
2) Compute the inverse transformation of the reference

imageQp�1ffR(x)g.
Compute the resulting mean-square error using (22). Test
for convergence; if reached, then quit; else, continue at
step 3.

3) Test for a reduction of"2. If reduced, then do step 3.1;
else, do step 3.2.

3.1) Decrease� and updatep0 = p.

3.2) Increase�.

4) Solve (14) for�p. According to (23), updatep =
p0��p = (
+�
;A(I+�A); b+A(I+�A)�b)>.
Continue at step 2.
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