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Abstract 

We propose a new optimizer in the context of multimodal 
image registration. The optimized criterion is the mutual in- 
formation between the images to align. This criterion requires 
that their joint histogram be available. For its computation, 
we introduce differentiable and separable Parzen windows 
that satisfy the partition of unity. Along with a continuous 
model of the images based on splines, this allows us to derive 
exact and tractable expressions for the gradient and the 
Hessian of the criterion. Then, we develop an optimizer based 
on the Marquardt-Levenberg strategy. Our new optimizer is 
specific to mutual information, in the same sense that 
Marquardt-Levenberg is specific to least-squares. 

We show that our optimizer is particularly well-adapted to 
an iterative coarse-to-fine approach. We validate its accuracy 
by comparing its performance to that of several results avail- 
able in the literature. 

1. Introduction 

The mutual information between two images can be re- 
garded as a statistical tool to measure the degree to which an 
image can be predicted from the other. It has been introduced 
independently by [ 1] and [2] in the context of multimodal reg- 
istration, along with a stochastic optimizer. In a previous ICIP 
paper [3], we used this registration criterion in a multiresolu- 
tion context and presented an approach based on Parzen esti- 
mates of the joint histogram of both images. It was character- 
ized by a consistent model based on splines for the computa- 
tion of the resolution pyramid and of the interpolation model. 
Because we did no attempt to use the gradient available 
through the Parzen strategy, our exploratory investigations 
were suffering from an inefficient optimizer. In this paper, we 
develop a new optimizer that is well adapted to multiresolution 
multimodal registration. We validate our approach by applying 
it to a benchmark data base. 

In the specific context of multiresolution, the optimizer has 
to be particularly efficient when the initial solution is already 
close from the desired solution. If this requirement is not satis- 
fied, the multiresolution approach loses its attractiveness be- 
cause one has to iterate at the finest level anyway. Few opti- 
mizers satisfy this requirement; for example, some algorithms 
are potentially super-linear only after they have explored in 
some detail the surroundings of the initial condition (e.g., 
Fletcher [4], Powell [5]). This exploration can be costly in 
terms of number of function evaluations required. On the other 
hand, an algorithm of the Marquardt-Levenberg type enjoys no 

such restriction [6]; unfortunately, the class of problems that 
can be solved by the original formulation of Marquardt- 
Levenberg is limited to least-squares, even though they might 
be non-linear. 

Mutual information is not a least-squares criterion. For this 
reason, we develop a new optimizer by modifying the 
Marquardt-Levenberg strategy to accommodate for that fact. 
In addition, we show that the selection of a particular type of 
Parzen windows allows for a tremendous reduction of the 
computational burden. This reduction leads to tractable forms 
for the gradient and the Hessian of the criterion. 

The Marquardt-Levenberg approach requires that gradients 
be computed. In turn, those require a continuous image model. 
By using an image model based on splines, we satisfy these 
requirements and achieve the computation of exact derivatives 
(as opposed to only their estimates, as proposed elsewhere [ 1, 
71). We keep the same spline model for generating the least- 
squares pyramid necessary for a legitimate multiresolution im- 
plementation-this approach incorporates anti-aliasing, as op- 
posed to subsampling. In addition, the spline model is also 
used for performing the geometric transformations involved in 
searching for the best registration parameters. This results in 
an algorithm that is entirely consistent, fast (because of the ef- 
ficiency of our modified Marquardt-Levenberg algorithm), ro- 
bust (because of the multiresolution), and accurate (because 
the consistent use of the continuous spline model introduces 
no need for approximation). 

2. Image Registration 

One out of many applications of image registration is to 
help physicians in the precise delineation of lesions or tumors, 
which is a necessary step in the planning of radiation therapy. 
In brain imaging, it is common to acquire both a computed 
tomography scan (CT) and a magnetic resonance image 
(MRI). The former typically provides precise anatomical char- 
acteristics that help in the accurate aiming of the radiation 
beams, while the latter is less accurate with respect to anatomy 
but offers much better opportunities for the delineation of tu- 
mors-which are usually invisible in the CT image. A third 
modality is also sometimes used: positron emission tomogra- 
phy images (PET) provide a measure of the local activity of 
the brain, In return, this last modality offers no clue to the 
main anatomical features; for example, the skull is indistin- 
guishable from the background. It is nonetheless of clinical 
interest to align PET and MRI in order to associate structure 
and function. 
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The combination of complementary information from sepa- 
rate imaging studies into a single coherent study can be 
prospective (in which case the radiation oncologist must plan 
for, and setup corresponding fiducial markers in both modali- 
ties before scanning) or retrospective (in which case the regis- 
tration is based on data without the help of external fiducial 
markers). Because prospective registration is not applicable to 
data acquired without prior or coherent planning, only retro- 
spective registration is available in the majority of situations. 

Routine multimodal registration algorithms are based on 
markers [S], either prior or inferred from data, and surface 
matching (e.g., chamfer registration 191, iterated closest point 
[lo]). Since the accuracy of these routine registration algo- 
rithms cannot be better than the accuracy of the position of 
markers or the accuracy of the segmented surfaces, we propose 
a new algorithm that dispenses with these limitations. The 
principle is to measure, in a well-defined statistical sense, the 
degree to which the first image can predict the second one. 
Registration is achieved when the images are oriented in a way 
that maximizes this prediction measure. 

This solution relies on recovering a direct relation between 
the intensities of the images, for which several similarity mea- 
sures are available [ 111. One way to take advantage of them is 
to restrict their use to regions of interest where we know a pri- 
ori that they are relevant [ 121. Another way is to perform reg- 
istration based on a specific metric that is general enough to 
cope well with parts of the image where the correspondence is 
not apparent. Often, such measures rely on an adequate inter- 
mediate feature, namely, the joint histogram of the two images 
to register. Intuitively, this histogram is clustered when the 
images are aligned, and spread out otherwise. Several mea- 
sures of clustering have been proposed [13, 141, but the most 
successful approach is to give up clustering in favor of another 
information theoretic concept: mutual information [l, 2, 71. 
This latter has the interesting property that it can be applied 
without regard to the specific pair of modalities to register. 

3. Mutual Information 

In this paper, we specifically deal with the Kullback- 
Leibler measure of mutual information, for which an essential 
element is the joint histogram of the test and reference image. 
The test image is also sometimes called the reslice image be- 
cause it undergoes a reslicing operation while the transforma- 
tion is performed. By contrast, the reference image-which is 
sometimes called the target image-is not transformed. Thus, 
we expect the histogram of the transformed test image to de- 
pend slightly on the transformation parameters (because of the 
interpolation process), and the histogram of the reference im- 
age to be constant, exactly. The most important dependence 
with respect to the geometric transformation parameters is to 
be found in their joint histogram. 

A partial-volume solution to its computation has been pro- 
posed recently [7]. Its specific advantage is that the marginal 
probabilities of the joint histogram of the test and reference 
image will never increment a bin that should otherwise stay 
empty. Its disadvantage is that the marginal histogram that 
corresponds to the histogram of the reference image depends 
on the transformation parameters, which is clearly unsatisfy- 
ing, for indeed the reference image is never transformed. 

We propose instead to compute-and minimize-the nega- 
tive of the mutual information S between a test image fT and 
a reference image fa as follows: 

SW) = - c c. P(bK;Y)log,( 
Ldq ICEI, 

(1) 

where the marginal discrete probabilities are given by 
P&P) = NJ) ~(~;I.0 = &P(w) 

and 

(2) 

(3) 

and where the joint probability p is proportional to the joint 
histogram h by a transformation-dependent factor a 
P(bK;F) = a(P) h(bK;P). (4) 

The joint histogram itself is computed through the use of 
Parzen windows w 
h(l,K;P)= CW(~-f,(g(xi;~)))W(K-ff~(Xi)), (3 

XiSV 

where g is a geometric transformation parametrized by p, V 
is a volume of interest in which we select as many discrete 
coordinates xi as we care to, and 1 EL, and K E& are dis- 
crete intensity values. Under these conditions, the normaliza- 
tion factor a is given by 

(6) 

The argument of the logarithm function in (1) might take a 
zero value. For example, when fT and fa are perfectly 
aligned and come from the same modality, we expect that 
p(t,lc;p) = 0 if 1. f K . However, this difficulty is irrelevant be- 
cause these terms can be discarded in reason of the well- 
known relation Jil+ x log(x) = 0. 

4. Parzen Window 

To yield a consistent, unbiased density estimator when its 
width vanishes, the most important conditions that a Parzen 
window w must satisfy are integrability, absolute integrabil- 
ity, boundedness, and sufficient decay [ 151. For the purpose of 
this paper, we impose an additional restriction by asking that 
w satisfies a partition of unity condition for every given real 
value f 
l= Cw(1- f> Vf EIR. (7) 

IEL 
When this constraint is satisfied, it is easy to verify that the 
normalization factor a is indeDendent of the transformation 

where (#V) represents the number of discrete coordinates xi 
considered in the volume of interest V. In addition, the 
marginal discrete probability pa of the reference image fR is 
also independent? of p, as shown in Expression (9) 

t The Parzen window used in [l] is Gaussian-thus separable, like ours. 
However, it does not satisfy the partition of unity constraint. For the approach 
[I] to be consistent, we would expect the entropy of the reference image to 
depend on the transformation, a fact that is by-stepped in [ 11. 
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(12) 

(14) 

&(K;P)=a(/-l) CW('c-ff~(Xi))Cw(L-ff~(g(Xi;ll))). (9) 
X:EV EL 

We also ask that w be positive. This is obviously necessary 
when the width of the Parzen window is not asymptotically 
small, in order to forbid the histogram (5) to take negative val- 
ues. Finally, we ask that w be differentiable, which will allow 
us to develop an optimization algorithm that takes advantage 
of an explicit form for the gradient of the criterion S with re- 
spect to a component of the transformation parametrized by p. 
These requirements are all satisfied when we select a B-spline 
in the role of the Parzen window. 

5. Gradient and Hessian Computation 

The disadvantage of our Parzen window approach is that 
some entry (Q,K~) of the joint histogram might display a non- 
zero probability even if there is no datum corresponding to 
that particular entry, because the contributions will have been 
spread over potentially empty bins. In counterpart, the 
marginal histogram that corresponds to the fixed reference im- 
age does not depend on the transformation parameters. This 
last benefit is essential to allow the removal of dependencies 
between the gradient of the criterion and the gradient of the 
reference image. 

This results in a tremendous overall simplification of the 
expression for the gradient of the criterion with respect to 
transformation parameters. We show that the lengthy gradient 
of the criterion S with respect to a transformation parameter 
II given by (10) can be simplified into 

(11) 

We emphasize here that (11) is not an approximation of 
(10). In fact, both are identical, provided the Parzen window 
used in the computation of the joint histogram satisfies the par- 
tition of unity condition. The expression for the Hessian 
(second derivative) of the criterion enjoys an even greater re- 
duction in the number of terms needed. Starting from (11) and 
taking an additional derivative, we get (12). Had we started 
from (lo), the number of terms would have been prohibitively 
large. 

6. Optimizer 

Marquardt and Levenberg [6] have introduced an iterative 
optimizer that takes advantage of both the robustness of the 
gradient approach and the efficiency of the Newton algorithm, 

while avoiding their respective drawbacks: slow convergence 
for the gradient, and lack of robustness for Newton. This result 
is achieved by combining those two solutions in an adaptive 
way: The Newton solution predominates when the previous it- 
erations have been successful-thus accelerating the algo- 
rithm-while the gradient solution predominates when the 
previous iterations have failed to improve the criterion, at the 
same time reducing the step-size in the gradient direction- 
thus gaining in robustness. Their algorithm is restricted to the 
minimization of a least-squares criterion; in this case, it is not 
only possible, but even beneficial to simplify the Hessian ma- 
trix needed for computing the Newton contribution by ignor- 
ing second-order derivatives. 

Unfortunately, the mutual information criterion (1) is not 
least-squares. We nevertheless follow the same strategy than 
Marquardt-Levenberg. In particular, we too ignore the second- 
order terms in (12). We justify this simplification by the fol- 
lowing argument: when the images are perfectly aligned, and 
when they are totally dependent, we have that 
h(t,~) = h(t) OR. Then, our partition of unity condition im- 
plies that 

a2h(t K) ~~~‘og2~ = ~h2(h&))~ = 0. (13) 

-F 
Since the main contribution of the Hessian is limited to it- 

erations in the vicinity of the desired solution, second-order 
terms can be safely ignored. We note however that this simpli- 
fication is not as beneficial than for the least-squares criterion: 
in the latter case, the Hessian becomes positive-definite, while 
in our case this is not necessarily true. 

7. Image Model 

The Hessian and the gradient all depend on the ah/tip term 
given in (14). This term introduces the spatial gradient of the 
test image, which thus requires to be given through a continu- 
ous and differentiable model. In addition, the geometric 
transformation g also requires a continuous model for describ- 
ing the image in-between samples. We select this model to be 
f(X)=~~SCVc(xi)B'~'(X-X,), (13 

E 
where p’“‘(x) is a separable convolution kernel given by a ten- 
sor-product of B-splines p(“)(x) of degree n, and where c(xi) 
is a series of coefficients obtained by recursive digital filtering 
of the samples f (xi) (see [ 16, 171). The spatial gradient of the 
image is thus given by Expression (16) 
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TABLE I 
RESIDUAL MEDIAN DIFFERENCE IN MM BETWEEN THE PROSPECTIVE GOLD-STANDARD AND SEVERAL RETROSPECTIVE 

REGISTRATION ALGORITHMS. THE ALGORITHM PROPOSED IN THIS PAPER IS LABELED TH. 

BA CO HA HI MA1 MAL NO PE R03 R04 TH 
CT-T1 1.6 1.5 3.4 1.2 5.1 4.3 3.3 2.7 5.7 5.4 1.5 
CT-PD 1.9 1.5 3.1 1.9 4.1 4.0 7.8 1.9 4.9 4.8 1.7 
CT-T2 2.5 1.5 4.2 1.5 3.9 5.0 3.9 2.5 5.4 4.7 1.Z 
CT-Tlr 1.4 0.7 3.3 0.7 4.9 5.4 3.4 2.2 6.3 5.9 0.9 
CT-PDr 1.7 0.8 3.0 0.7 3.0 4.0 4.6 2.1 5.5 5.5 1.0 
CT-T2r 2.1 0.8 3.5 0.8 4.3 5.3 4.2 2.9 5.3 5.3 0.9 
PET-T1 4.6 3.6 2.8 3.2 3.5 4.2 3.6 2.9 4.0 3.4 3.0 
PET-PD 5.2 2.9 4.2 3.1 4.7 4.0 4.1 3.3 4.3 3.3 2.7 
PET-T2 4.7 2.8 2.7 2.4 5.3 4.9 4.6 3.3 4.0 3.6 2.6 
PET-Tlr 3.2 2.8 3.6 2.5 3.9 3.6 3.9 2.8 3.8 3.6 1.9 
PET-PDr 4.5 3.0 3.2 3.0 4.7 3.6 4.4 2.8 3.6 4.1 2.0 
PET-T2r 3.9 2.0 3.3 2.2 4.0 3.6 5.2 2.9 3.8 3.4 1.9 

(16) 

This gradient is exact provided p’“)(x) is differentiable, which 
is true for all arguments x as soon as n > 1 (this excludes lin- 
ear interpolation). In practice, we select cubic splines (n = 3) 
because this model yields better performance than quadratic 
splines, while their computational cost is essentially the same. 
For the same reasons, we also select a cubic B-spline in the 
role of the Parzen window w . 

8. Multiresolution 

The model proposed in Section 7 allows the computation of 
an image pyramid that is optimal in a least-squares sense [ 181. 
We use this pyramid for performing optimization in a coarse- 
to-fine strategy. Registration is first performed at the coarsest 
scale, where convergence is fast because there are few data, 
which largely compensates for a potentially higher number of 
iterations needed to reach convergence (the initial condition at 
the coarsest scale is arbitrary). Moreover, it is likely that the 
criterion to optimize has a reduced number of local optima; 
this is due to a loss of image details and results in enhanced 
robustness. In return, the solution is only approximate. 

Registration is then performed on a finer scale with the re- 
sult of the previous scale as initial condition. This process is 
iterated until the finest scale is reached. Especially in 3D, there 
is a great difference in the amount of data between pyramid 
levels. This means that only the number of iterations per- 
formed at the finest level is relevant for the computational cost 
of the whole optimization. Thus, it is very important that the 
initial condition for this last level be the best possible in order 
to reduce the amount of refinement necessary to reach conver- 
gence. This implies that intermediate pyramid levels are rele- 
vant in the optimization process. 

A coarse-to-fine strategy is successful when the optimizer 
takes particular advantage from good starting conditions. Very 
few optimizers satisfy this constraint. Some claim super-linear 
convergence (e.g., Powell, Fletcher, Polak), but reach it only 
after at least N criterion evaluations have been performed, 
where N is the number of dimensions of the parameter p. By 

contrast, the optimizer we proposed in Section 6 is able to 
converge in just one step when the conditions are favorable. 

One could naively assume that the quality of the coarse lev- 
els is only moderately relevant because, after all, the final ac- 
curacy depends on the finest level only. Along these lines, a 
simple pyramid (e.g., subsampling) and a simple interpolation 
scheme (e.g., linear) would seem good enough to prepare the 
initial condition for optimizing at the finest level. Reality is 
dramatically different, though. To get optimal starting condi- 
tions, it is crucial that the coarse levels of the pyramid most 
faithfully represent the finest level. In addition, only the use of 
high-quality interpolation models will ensure convergence to 
an accurate solution. Since the final iterations are so costly, it 
is very advantageous to pay special attention to the work per- 
formed at coarser resolution, because every spared fine-scale 
iteration is worth many coarser-scale ones. Moreover, robust- 
ness depends almost exclusively on high-accuracy registration 
and faithfulness at the coarse levels. 

9. Experiments 

We applied our algorithm to the registration of volumes ac- 
quired by CT (Computed Tomography) and three MRI 
(Magnetic Resonance Imaging) modalities: PD (Proton 
Density), Tl (Tl Relaxation Time) and T2 (T2 Relaxation 
Time). The goal was to align the CT volumes with the MRI 
ones, which represent two very different measurements since 
the former use X-rays while the latter deal with the interaction 
between spins and magnetic field. The MRI volumes were 
available in two versions: raw (PD, Tl, T2), and corrected 
(rectified) for geometric distortion (PDr, Tlr, T2r). There were 
seven patients in each case. 

We compare the results of our multimodal brain image 
registration algorithm to those of several other approaches 
published in the literature. The comparison is based on a 
methodology proposed by West and Fitzpatrick [19], who let 
selected researchers access a standard set of volumes to be reg- 
istered. They also act as a repository for the ideal registration 
transformations (gold-standard) acquired by a prospective 
method using physical markers. These markers are erased be- 
fore the volumes are disclosed to the investigators, who then 
face a retrospective blind registration task. After registration, 
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they report back a set of transformation parameters that are 
compared to the gold-standard. This results in a geometric er- 
ror measured in mm, and allows for a simple ranking of the 
competing algorithms-from an accuracy point of view. 

Table I shows in mm the median accuracy reached by the 
investigators taking part in that study (for a complete discus- 
sion of the experimental protocol, see [19]). We observe that 
our algorithm shows very promising results, given that it is en- 
tirely automatic (which is not true for several of the competing 
algorithms), and given that it performed its task without being 
specifically tuned to any pair of modalities. 

10. Conclusions 

We have developed a multimodal registration algorithm 
that takes advantage of a consistent image model based on cu- 
bic splines. We have advocated the use of a coarse-to-fine op- 
timization strategy, and explained why the quality of the 
model is particularly important at coarse resolutions for speed 
issues, robustness and accuracy. 

The mutual information between two images is our registra- 
tion criterion, which requires the computation of their joint 
histogram. We have proposed to perform this computation 
through Parzen windows that satisfy the partition of unity con- 
dition. This allowed the development of a tractable expression 
for the gradient and the Hessian, and led to the development of 
an optimizer based on the Marquardt-Levenberg strategy. We 
justified the use of a simplified form for the Hessian. 

We have validated our algorithm with biomedical volumet- 
ric brain images and compared its performance to that of sev- 
eral other approaches available in the literature. In many in- 
stances, our algorithm shows a better accuracy, thanks to the 
consistency of our approach. 
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