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Abstract—Hermite splines are commonly used for interpolating
data when samples of the derivative are available, in a scheme
called Hermite interpolation. Assuming a suitable statistical
model, we demonstrate that this method is actually optimal for
reconstructing random signals in Papoulis’ generalized sampling
framework. We focus on second-order Lévy processes—the in-
tegrated version of Lévy processes—and rely on cubic Hermite
splines to approximate the original continuous-time signal from
its samples and its derivatives at integer values. We statistically
justify the use of this reconstruction scheme by demonstrating the
equivalence between cubic Hermite interpolation and the linear
minimum mean-square error (LMMSE) estimation of a second-
order Lévy process. We finally illustrate the cubic Hermite
reconstruction scheme on an example of a discrete sequence
sampled from the realization of a stochastic process.

I. INTRODUCTION

Reconstruction using interpolation plays an essential role in
communications and signal processing as it creates a bridge
between sampled and analog signals. Foundations of interpo-
lation are attributed to Shannon [1], who demonstrated that
perfect reconstruction was possible for sampled bandlimited
signals. In its initial formulation, Shannon’s theory involves
uniform samples of the original continuous-time signal. Pa-
poulis [2] proposed an extension of this framework referred
to as generalized sampling. The underlying idea is that a
signal can be fully characterized, and thus reconstructed, with
many different kind of data, uniform samples being only one
of them. These initial formulations of the sampling problem
were designed for bandlimited signals and involved ideal
filters, making them mostly unusable in practice although
theoretically beautiful.

Extensions without band limited constraints relying on
spline-based signal-representation models have been pro-
posed [3]. For instance, the well-known Hermite interpolation
setting proposed by Schoenberg [4] is a typical instance of
Papoulis’ generalization without band limited constraints. In
Hermite interpolation, a continuously differentiable function
is generated from two discrete sequences that correspond to
samples of a function and its derivative, respectively, and the
data are fitted using Hermite-spline basis functions. Following
the notation of [3], Hermite interpolation is obtained by
choosing h1(t) = δ(t) and h2(t) = δ′(t) as analysis filters,
where δ is the Dirac delta function.

In the generalized sampling framework, reconstruction is
based on variational principles [5]. However, a statistical

interpretation can be given to these deterministic spline-fitting
methods through the minimal mean square-error (MMSE)
criterion, extending their use to the optimal reconstruction of
random processes in the least-squares sense. In the stationary
case, the generalized spline interpolator was demonstrated [6]
to be the linear minimum mean-square error (LMMSE) esti-
mator of the continuous-time stochastic process s(t), t ∈ R,
given its discrete sequence of samples {s(k)}k∈Z. The spline
interpolation algorithm is therefore optimal for the estimation
of a wide family of stationary random signals. Similar results
have been demonstrated by [7], [8]: the optimal (MMSE)
interpolator for first-order Lévy processes is the piecewise
linear spline. Note that these processes, defined as s such that
Ds = w, are non-stationary but (wide-sense) self-similar.

We aim at extending these results to the Hermite-spline
interpolation framework, relying on the two sequences of
samples {s(k), s′(k)}k∈Z. To do so, we consider self-similar
second-order Lévy processes s such that D2s = w, for which
the derivative exists. We first introduce the notations and
objects related to the cubic Hermite-interpolation problem as
formulated by Schoenberg and describe the second-order Lévy
processes, which are relevant to this work. Then, we present
our main contribution, namely, the statistical optimality of
the cubic Hermite spline-reconstruction method for the self-
similar stochastic processes we consider. We give a formal
proof of this optimality and finally propose an illustrative
example where we apply the proposed approach to samples
of a second-order Gaussian process.

II. THEORETICAL BACKGROUND

Through the paper, we shall often use the notation f(t) for
the function f and x[k] for the discrete sequence {x[k]}k∈Z.
In addition, the sequence of samples of a function f(t) at the
integers is denoted by f(k) = f(t)|t=k.

A. Hermite Spline Interpolation

Schoenberg [4], [9] defines the cardinal cubic Hermite inter-
polation problem as follows: Knowing the discrete sequences
of numbers c[k] and d[k], k ∈ Z, we look for a continuous
function f(t), t ∈ R, satisfying f(k) = c[k], f ′(k) = d[k]
for all k ∈ Z, and such that f belongs to S4,2. We denote by
S4,2 the class of spline functions of degree 3 with knots of
multiplicity 2 at the integers. The existence and uniqueness of
the solution is guaranteed [4] provided that c[k] and d[k] are
in S′(Z), the space of functions of slow growth. We say that978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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Fig. 1. The cubic Hermite splines (a) φ1 and φ2 and (b) their first derivatives.
The two functions and their derivatives are vanishing at the integers with the
exception of φ1(0) = 1 and φ′2(0) = 1 (interpolation condition). Their
support is of size two.

a sequence x[k] is in S′(Z) if there exist two real constants N
and C such that |x[k]| ≤ C(|k|N + 1). In addition, the spline
function fHer, which is the unique solution of the second-order
cardinal Hermite interpolation problem, is explicitly given [4]
by

fHer(t) =
∑
k∈Z

(c[k]φ1(t− k) + d[k]φ2(t− k)) . (1)

The explicit expressions of the two Hermite cubic splines
φ1, φ2 are found in [9], [10] as

φ1(t) =

{
(2 |t|+ 1) (|t| − 1)2 for 0 ≤ |t| ≤ 1
0 for |t| > 1,

φ2(t) =

{
t (|t| − 1)2 for 0 ≤ |t| ≤ 1
0 for |t| > 1.

These two functions are represented in Figure 1.
In addition to the restriction of the support to the interval

[−1, 1], the main property of this construction is that the two
generators φ1, φ2 and their derivatives φ′1, φ′2 satisfy the joint
interpolation conditions

φ1(k) = δ[k], φ′2(k) = δ[k], φ′1(k) = 0, φ2(k) = 0,

for all k ∈ Z, where δ[k] is the discrete unit impulse. In this
setting, the function φ1(t) interpolates the point values c[k]

while the first derivative of φ2(t) interpolates the derivative
values d[k].

The Hermite-spline space of functions{∑
k∈Z

(c[k]φ1(· − k) + d[k]φ2(· − k)) : c[k], d[k] ∈ S′(Z)

}
can be seen as a space of cubic splines that can accommodate
quadratic transitions, or, in other words, of splines of degree
3 with regularity C1 at the knots. Note that there is no
conceptual difficulty in considering c[k], d[k] ∈ S′(Z) rather
than the condition c[k], d[k] ∈ l2(Z) that is more commonly
found in the literature, since the Hermite basis functions φ1
and φ2 are compactly supported.

B. Second-Order Lévy Processes

We consider continuous-time random processes s solutions
of the stochastic differential equation

D2s = w,

where D is the differential operator and w a Lévy white
noise with finite variance and zero mean E{s(t)} = 0 for
all t ∈ R, with boundary conditions s(0) = s′(0) = 0. The
process s is called a second-order Lévy process [11]. Being
the integration of a Lévy process, second-order Lévy processes
are smoother. Such processes include the integrated version
of a Brownian motion, which corresponds to a Gaussian
white noise (Figures 2a and 2b). They can as well be driven
by compound-Poisson white noise (Figure 2c), which yield
a piecewise linear process, as illustrated in Figure 2d. The
second-order Lévy process s is continuous and its derivative
s′ is a first-order Lévy process [12]. The samples of s and s′

at the integers are therefore well-defined. As an example, the
Poisson process is not differentiable at the jumps locations.
However, the intersection of the set of transitions and the
sampling locations (i.e., the integers) is empty with probability
1. A throughout mathematical formalization of these objects
can be found in [11], [13].

Let css(t, τ) = E{s(t)s(τ)} be the autocorrelation function
of s. We note that the second-order Lévy process s is wide-
sense self-similar with scaling order H = 3

2 , meaning that s
and a

3
2 s
( ·
a

)
have the same second-order statistics ∀ a > 0.

Equivalently, its autocorrelation function satisfies css(t, τ) =
a3css

(
t
a ,

τ
a

)
. In the Gaussian case, s is even strongly self-

similar, which means that s and a
3
2 s
( ·
a

)
have the same law.

Moreover, s is non-stationary but has second-order stationary
increments [11]. The explicit expression of the autocorrelation
function css is given as [14]

css(t, τ) =
σ2

4

(
|t− τ |3 − |t|3 − |τ |3 + 3tτ(|t|+ |τ |)

)
and is normalized such that Var{s(t)} = σ2|t|3.

Our goal is to study the estimation of s at a fixed time point
t0 given {s(k), s′(k)}k∈Z. Since the process s is in S′(R) [15],
it thus fits the framework of II-A. Hence, the function t 7→
css(t, t0) and its derivatives can be expanded in a Hermite
basis.
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Fig. 2. Second-order Lévy processes for different types of noise. (a) Ran-
domly generated Gaussian noise and (b) corresponding second-order Gaussian
process. (c) Randomly generated Poisson noise with normally distributed
jumps and (d) corresponding second-order Poisson process. We use the
conventional way of representing white noises although they are not defined
pointwise.

III. MMSE ESTIMATION AND INTERPOLATION

We here state and prove our main result about the statistical
optimality of Hermite spline reconstruction.

For a fixed t0, we aim at determining a linear estimator
of s(t0) given the random sequences {s(k), s′(k)}k∈Z. The
estimator will therefore be a random variable of the form

s̃(t0) =
∑
k∈Z

(at0 [k]s(k) + bt0 [k]s
′(k)) , (2)

where at0 [k] and bt0 [k] are two infinite deterministic se-
quences of regression coefficients. The linear minimum mean-
square error (LMMSE) estimator s̃LMMSE(t0) corresponds
to the estimator s̃(t0) that minimizes the mean-square error
E{|s(t0)− s̃(t0)|2}.

The random sequences s(k) and s′(k) are in S′(Z) almost
surely [11]. We therefore make sure that the summation
in (2) is well-defined by restricting ourselves to sequences
at0 [k], bt0 [k] ∈ S(Z), the space of sequences that decay faster
than any polynomial.

Theorem 1. Let s be such that D2s = w. Then, the linear
minimum mean-square error (LMMSE) estimators of s(t) and
s′(t) at t = t0 given the samples {s(k), s′(k)}k∈Z are

s̃LMMSE(t0) = sHer(t0)

s̃′LMMSE(t0) = s′Her(t0),

where

sHer(t) =
∑
k∈Z

(s(k)φ1(t0 − k) + s′(k)φ2(t0 − k))

is the Hermite interpolation of {s(k), s′(k)}k∈Z.

Proof. Note that, since boundary conditions impose that
s(0) = s′(0) = 0, we exclude the index k = 0 through the
proof for convenience purpose.

Applying the orthogonality principle [16] yields the two
equations

E{s(n)(s(t0)− s̃LMMSE(t0))} = 0, (3)
E{s′(n)(s(t0)− s̃LMMSE(t0))} = 0. (4)

By definition of the autocorrelation function, we have that

E{s(t)s(τ)} = css(t, τ) = css(τ, t), (5)
E{s′(t)s(τ)} = ∂1css(t, τ),

E{s(t)s′(τ)} = ∂2css(t, τ) = ∂1css(τ, t). (6)

Rearranging (3) and plugging in (2), we obtain

E{s(n)s(t0)} = E{s(n)s̃LMMSE(t0)}

=
∑

k∈Z\{0}

(at0 [k]E{s(n)s(k)}

+ bt0 [k]E{s(n)s′(k)})

which, from (5) and (6), can be rewritten as

css(n, t0) =
∑

k∈Z\{0}

(at0 [k]css(n, k) + bt0 [k]∂2css(n, k)) .

Doing similar operations with (4), we obtain the system
css(n, t0) =

∑
k∈Z\{0}

(at0 [k]css(n, k) + bt0 [k]∂2css(n, k))

∂1css(n, t0) =
∑

k∈Z\{0}
(at0 [k]∂1css(n, k) + bt0 [k]∂2∂1css(n, k)) .

As css(n, ·) and ∂1css(n, ·) belong to the space spanned by
the cubic Hermite splines φ1 and φ2, we can expand them
following (1) as

css(n, ·) =
∑

k∈Z\{0}
(css(n, k)φ1(· − k) + ∂2css(n, k)φ2(· − k)),

∂1css(n, ·) =
∑

k∈Z\{0}
(∂1css(n, k)φ1(· − k) + ∂2∂1css(n, k)φ2(· − k)).

The system to solve thus becomes



∑
k∈Z\{0}

(css(n, k)φ1(t0 − k) + ∂2css(n, k)φ2(t0 − k))

=
∑

k∈Z\{0}
(at0 [k]css(n, k) + bt0 [k]∂2css(n, k))

∑
k∈Z\{0}

(∂1css(n, k)φ1(t0 − k) + ∂2∂1css(n, k)φ2(t0 − k))

=
∑

k∈Z\{0}
(at0 [k]∂1css(n, k) + bt0 [k]∂2∂1css(n, k)) .

(7)

Let the sequences u and v be such that u[k] = φ1(t0 − k)−
at0 [k] and v[k] = φ2(t0 − k) − bt0 [k], k ∈ Z \ {0}. The
system (7) can be reformulated in blocs matrix notation as[

A B
BT C

] [
u
v

]
=

[
0
0

]
,

where A[n, k] = css(n, k), B[n, k] = ∂2css(n, k), BT [n, k] =
∂1css(n, k) (see (6)) and C[n, k] = ∂1∂2css(n, k), with a
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slight abuse of notation due to the fact that these sequences
and matrices are bi-infinite. To finish the proof, we observe
that

[
u
v

]T [
A B
BT C

] [
u
v

]
= Var

 ∑
k∈Z\{0}

(
u[k]s(k) + v[k]s′(k)

)
= 0,

which implies that
∑
k∈Z\{0} (u[k]s(k) + v[k]s′(k)) = 0

almost surely. The only solution is therefore u[k] = v[k] = 0
for all k ∈ Z \ {0}. Indeed, if one of the u[k] or v[k] is
nonzero, say for instance u[k0], it implies that s(k0) can be
deterministically evaluated from the values of all the s(k) and
s′(k) except s(k0), which is absurd. Therefore,

at0 [k] = φ1(t0 − k),
bt0 [k] = φ2(t0 − k),

and the LMMSE is finally given by

s̃LMMSE(t0) = sHer(t0)

=
∑
k∈Z

(s(k)φ1(t0 − k) + s′(k)φ2(t0 − k)) .

The proof for the problem of estimating s′(t0) using
{s(k), s′(k)}k∈Z is obtained with a similar development start-
ing from

E{s(n)(s′(t0)− s̃′LMMSE(t0))} = 0,

E{s′(n)(s′(t0)− s̃′LMMSE(t0))} = 0,

and the LMMSE is given by

s̃′LMMSE(t0) = s′Her(t0)

=
∑
k∈Z

(s(k)φ′1(t0 − k) + s′(k)φ′2(t0 − k)) .

In the Gaussian case, it can be shown from Bayes theorem
that the LMMSE is actually the MMSE [16], which leads to
Proposition 1.

Proposition 1. If w is Gaussian, then the Hermite interpola-
tion of {s(k), s′(k)}k∈Z is also the MMSE of w.

Theorem 1 and Proposition 1 provide solid statistical ground
for using Hermite spline interpolation in the case of second-
order Lévy processes. The novelty of these results is twofold.
First, they rely on a sampling scheme involving both s(k) and
s′(k). Then, in addition to the optimal estimator of s(t0), they
simultaneously give the optimal estimator of the derivative
s′(t0), which happens to be the derivative of the Hermite spline
interpolator.

Our results exhibit strong links with [6], [7] as they also
highlight the optimality of splines for the estimation of random
processes from their samples. Our contribution however differs
in two ways: first, from the fact that we know the samples s′(k)
in addition to the s(k), and then from the class of processes
we study which are non-stationary (unlike [6], where the

stationary case is investigated) and second-order (unlike [7],
where first-order Lévy processes are considered).

We note that, in the Poisson case, our result implies that the
best approximate of a piecewise linear (second-order Poisson)
process is obtained by a piecewise cubic (Hermite) function.
This result, which appears counter intuitive at first, can be
explained as follows: On one hand, the second-order Poisson
process is generated by the double integration of an impulsive
noise, with non-uniformly distributed impulse locations. On
the other hand, the Hermite interpolation scheme is cardinal
with knots placed at the integers. In this setting, one cannot
simply linearly interpolate between the “knots” of the second-
order Poisson process as they are not located at the integers.

IV. ILLUSTRATIVE EXAMPLES

We illustrate the Hermite spline reconstruction from sam-
ples of a second-order Lévy process in the Gaussian case.
A realization of a continuous-time random process s such
that D2s = w and its continuous-time derivative s′ are
represented in Figures 3a and 3b, respectively. As, formally,
s = D−2w, the process s was generated by performing
two rounds of integration on a Gaussian white noise while
the derivative s′ was obtained by integrating the noise once.
The process and its derivative were sampled at the integers,
yielding the two discrete sequences s(k) and s′(k) represented
in Figures 3c and 3d. Finally, the Hermite interpolation
scheme (1) was applied to reconstruct the process s from
its samples {s(k), s′(k)}, yielding the continuous-time sHer

displayed in Figure 3e. Similarly, the scheme was applied
to reconstruct the continuously defined derivative s′ from the
samples {s(k), s′(k)}k∈Z, yielding s′Her shown in Figure 3f.
The absolute reconstruction error |sHer(t) − s(t)| is smaller
than 0.01 (Figure 3g), and the absolute reconstruction error
on the derivative |s′Her(t)−s′(t)| is smaller than 0.05, as seen
in Figure 3h.

V. CONCLUSION

In this paper, we demonstrated that Hermite spline re-
construction is the best linear estimator for the task of re-
constructing a second-order Lévy process from its discrete
samples. For the process s satisfying D2s = w, Hermite
spline reconstruction is even statistically optimal among all
possible estimators when the underlying noise w is Gaussian.
We generated a realization of a second-order Gaussian process
and used it to illustrate the sampling and reconstruction using
Hermite splines. This example allowed us to highlight the
small reconstruction error when using Hermite interpolation.

Results presented in this work hold for uniform samples.
However, we expect that similar findings would be obtained
in a non uniform sampling scheme, as it is already known in
the case of reconstruction with mere function samples [8].
An extension of our problem would be to investigate the
optimal estimation algorithm for continuous processes given
collections of noise-corrupted measurements. We again expect
to obtain results analogous to the ones presented for the
ordinary sampling case in [6].
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Fig. 3. Hermite spline reconstruction of a sampled second-order Gaussian
process. (a) Realization of a second-order Gaussian process s and (b) its
continuous derivative s′. (c) Discrete sequence of samples s(k) drawn from
s(t) and (d) derivative sequence of samples s′(k) drawn from s′(t). (e)
Reconstruction sHer of the original continuous-time process s using Hermite
spline interpolation. (f) Reconstruction s′Her of the original continuous-time
derivative s′ using Hermite spline interpolation. Reconstruction errors (g)
(sHer(t)− s(t)) and (f)

(
s′Her(t)− s′(t)

)
.
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