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Hermite Snakes With Control of Tangents

Virginie Uhlmann, Student Member, IEEE, Julien Fageot, and Michael Unser, Fellow, IEEE

Abstract— We introduce a new model of parametric contours
defined in a continuous fashion. Our curve model relies on
Hermite spline interpolation and can easily generate curves with
sharp discontinuities; it also grants direct access to the tangent
at each location. With these two features, the Hermite snake
distinguishes itself from classical spline-snake models and allows
one to address certain bioimaging problems in a more efficient
way. More precisely, the Hermite snake construction allows intro-
ducing sharp corners in the snake curve and designing directional
energy functionals relying on local orientation information in the
input image. Using the formalism of spline theory, the model is
shown to meet practical requirements such as invariance to affine
transformations and good approximation properties. Finally, the
dependence on initial conditions and the robustness to the noise
is studied on synthetic data in order to validate our Hermite
snake model, and its usefulness is illustrated on real biological
images acquired using brightfield, phase-contrast, differential-
interference-contrast, and scanning-electron microscopy.

Index Terms— Active contours, segmentation, Hermite splines,
Hermite interpolation, bioimage analysis.

I. INTRODUCTION
ARAMETRIC spline-snakes, a particular variety of active
contours [1], [2], are widely used for the automated
analysis of biomedical images. They consist of a continuous
curve described by a small sets of coefficients and associated
basis functions.

Segmentation with snakes is usually performed in two
steps [2]. An initial configuration of the contour is first given.
The snake is then optimized from this starting condition by
minimizing a cost functional. Two aspects of an active contour
play a significant role: the snake model describes the curve
that will evolve on the image; the energy functional, usually
referred to as snake energy, dictates the evolution of the curve.
While remaining mostly automated, active contours allow for
extensive user interaction in term of feedback and manual
correction. This aspect probably explains the success of snake-
based methods for segmentation. There exists an extensive
literature on parametric snakes, both regarding snake model
variants [3]-[5] and snake energies [6]-[9]. The formulation
of the energy term is often problem-dependent.

In this paper, we propose a novel active contour that relies
on Hermite-spline interpolation [10] and we show its useful-
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ness for the analysis of bioimages. We present a complete
and general formulation of the Hermite snake, from which
a particular case (the open curve) has been briefly intro-
duced in [11]. Our Hermite snake is reminiscent of B-spline
based models [12]-[14] but benefits from the control of
tangents, which makes it well-suited to bioimaging. The essen-
tial ingredients of our construction are two complementary
basis functions that grant direct control on the curve and on
its tangent field. This representation offers two interesting
capabilities. First, it is able to reproduce sharp corners, or
tips, which are much harder to obtain using classical curves.
Second, the direct control of the tangents enables the design of
directional energy functionals. For these reasons, the method
we propose is well-suited to a wide range of segmentation
tasks. We provide mathematical grounds to motivate our curve
model and perform a serie of experiments to study the validity
and the robustness of the proposed approach, as well as to
demonstrate its strengths.

The construction of (open and closed) snake curves allowing
corners and the definition of directional energy function-
als has also been studied by Kimmel er al. [15] using a
geodesic active contours approach. The construction of the
model, the formulation of the energy, the associated optimiza-
tion procedure and, ultimately, the capabilities and strengths
of the resulting algorithms are however different. Geodesic
snake curves as proposed in [15] are defined implicitly. They
allow for topological changes but have limited potential for
manual interactions. By contrast, our Hermite snakes are
defined explicitly by construction. They allow for extensive
manipulation through a general user interface, although the
segmentation process remains mostly automatic. The anchor
points and tangent vectors can be manually tweaked in a
user-friendly and precise manner. Such edit capabilities are of
particular interest for complex image-analysis problems where
feedback from the user might be required. Open- and closed-
snake variants have been implemented as plugins for the open-
source image-analysis software Imagel [16]. They are freely
available online for use by the bioimage-analysis community.!

There is an extensive literature describing various types of
spline-snakes. Our contribution is first to provide a new snake
model that holds some very particular properties differentiating
it from existing active contours, but also to characterize the
model in a comprehensive manner so as to highlight its prac-
tical scope. The paper is organized as follows: In Section II,
we recall the general formulation of parametric snakes and
specify our new snake. We describe the two active contour
constructions (closed and open curves) that can be generated
by our model and identify the key requirements that the

1 http://bigwww.epfl.ch/algorithms/hsnakes
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Hermite snake should meet. In Section III, we translate the
practical desiderata into a precise mathematical formulation.
By relying on spline theory, we are able to study formally
the aspects of our snake that make it well-suited for practical
use. In Section IV, we discuss the features of the Hermite
snake that allow for the reproduction of sharp discontinuities
and the existence of orientation-based energy terms. Finally,
in Section V, we study the validity and robustness of the
proposed approach using synthetic images. We then illustrate
its capabilities by comparing it against other spline-snake
models. Finally, we provide results on real biological data in
different experimental settings.

II. THE HERMITE SPLINE SNAKE MODEL

Throughout the paper, we denote 2-D vectors as

v = (v1,0) = [Z;} Let r =

the image. It is described by the two Cartesian coordinate
functions x(¢z) and y(¢), with + € R a continuous variable,
that can be parameterized efficiently as the linear combination
of the integer shifts of given basis functions weighted by a
sequence of control points. In the case of spline snakes, the
basis are constructed from a compactly supported generator ¢
and we denote the sequence of distinct control points as
{c[k]}xez. The general expression of parametric spline snakes
is therefore

(x,y) be a 2-D curve on

r(n) = [;‘8] = kZch[kw — k). (1)

In our case, the generator of interest is composed of two cubic
Hermite B-spline basis functions ¢; and ¢; that can be written
in compact vector form as ¢ = (¢1, ¢2). Then, we denote the
space generated by their integer shifts as {¢d (- — k)}rez. The
novel aspect of our construction comes from the fact that, for a
given curve, the function ¢, is dedicated to the interpolation of
point values, while the derivative of ¢, interpolates the tangent
values. Both ¢ and ¢, are compactly supported in [—1, 1] and
benefit from fast and stable interpolation methods [17]. The
analytic expression of ¢; and ¢, as well as the mathematical
formulation of their joint interpolation properties is discussed
in Section III.

Parametric snakes are most commonly defined as closed
curves (see [18] for a review), although models handling
open curves for the segmentation of lines or boundaries
also exist [15], [19]-[22]. Our Hermite-snake formulation is
particularly well adapted to both scenarios. A closed curve
can easily be constructed relying on periodized versions of
the Hermite basis, in direct analogy with classical spline
snakes [14]. The generation of open classical cubic spline-
snakes, however, requires one to rely on virtual or invisible
control points at the curve extremities. By contrast, our cubic
Hermite snake allows for the imposition of natural conditions
at the snake’s ends through the control of its tangent vectors.

A. Open Hermite Snake

Open curves are specified by a sequence of M anchor points
and their associated tangents vectors, defined respectively for
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Fig. 1. (a) Open and (b) closed Hermite active-contour models. In both
cases, the curve is represented by a set of control points and associated tangent
vectors.
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Due to the interpolation properties of the Hermite generators,
control points and tangents directly correspond to the curve
value at integer locations. The parametric representation of
the open Hermite snake is then given by
M—1
Fopen(?) = Z (r[k]¢l((M — Dt —k)

k=0
+ vkl (M — 1)1 — k)), 3)
where ¢ € [0, 1]. An example curve is depicted in Figure la.

B. Closed Hermite Snake

Closed curves are obtained by periodizing the basis
functions. In such case, the active contour is entirely defined
by an M-periodic sequence of anchor points {r[k]}ic7z and
their tangent vectors {r'[k]};cz. In analogy to the open-curve
case,

rlk] = rlk+ M1 =r(0)|,_s .

d
VI = kM= S0 4)
dr =k
We then rely on M-periodized versions of the generators
(e.¢]
Prper(t) = D ¢p1(t — Mn) (5)
n=—00
(e.¢]
Prper(t) = D ot — Mn). (6)
n=—o00

The continuously defined closed contour, which is hence
1-periodic, is finally obtained as
M—1
Fclosed(f) = Z (r[k]¢l,per(Mt —k)
k=0

+ r/[k]¢2,per(Mt - k)), @)

where t € [0, 1] (see Figure 1b).



UHLMANN et al.: HERMITE SNAKES WITH CONTROL OF TANGENTS

The positive integer M, corresponding to the number of
control points/tangent pairs, regulates the flexibility of the
resulting snake. Large values of M allow for the reproduction
of complex shapes, while small ones yield simple contours.
It hence becomes possible to approximate any closed shape
by considering an arbitrarily large amount of control points
and associated tangents.

The model we propose is an extension of the cubic-spline
snakes. In the absence of ¢», Equations (3) and (7) indeed
reduce to the classical formulation (1) of parametric active
contours. The novel aspect of our approach is the introduction
of ¢ to enable control over the tangents. This construc-
tion grants several novel features discussed in more details
in Section IV that are absent from the classical spline snakes.

The link between our Hermite-spline interpolation scheme
and Bézier curves is explicitly formulated in Section III-F.

III. DESIRED PROPERTIES OF HERMITE
BASIS FUNCTIONS

An active-contour model should satisfy several natural
properties. Our goal hereafter is to specify our desiderata from
a user point of view; these then motivate a formal analysis.
The mathematical development and proof of each property has
been placed in the Appendix for the interested reader.

For the sake of clarity, we consider through this section
a 1D continuous curve s instead of a 2D contour r. As the
first and second coordinate functions of r are parameterized
separately, this does not induce any loss of generality in our
statements.

A. Characterization of Cubic Hermite Splines

Cardinal Hermite-spline functions were introduced in [23].
Here, we focus on the cubic polynomial case. Note that a
variety of Hermite schemes can be constructed, for instance
based on exponential functions, as in [24] and [25].

The cubic-Hermite-spline function space is specified by the
two generators

@i+ D -1* for0 <] <1

h1) = {0 for 1 < |1], ®)
el =1D? for0 < <1

#20) = {0 for 1 < |1]. ©)

Besides the restriction of the support to the interval [—1, 1], the
fundamental property of this construction is that the generating
functions ¢1, ¢» and their derivatives ¢}, ¢ satisfy the joint
interpolation conditions

p1(k) = Ilk1, #5(k) = dlk], $i(k) =0, ¢a(k) =0,

for all k € Z. The functions and their first derivative are
depicted in Figure 2, where the interpolation properties can
easily be observed. Note that ¢; and ¢; are cubic polynomials
in each interval [k, k + 1) for k = —1,0 and, by extension,
k € Z. They are differentiable with continuous derivatives at
the integer knots points r = k. The functions ¢; and ¢, are
deeply intricated: they solve together the interpolation problem
of the function and its derivative at the integers as exposed

(10)
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Fig. 2. Generators ¢ and ¢, for the cubic Hermite splines. The two functions
and their derivatives are vanishing at the integers with the exception of
$1(0) =1 and qbé (0) = 1 (interpolation conditions). Their support is [—1, 1].

in [23]. All the fundamental properties of Hermite basis
functions exposed in Section III are based on this intrication.

Linear combinations of the integer shifts of these generators
generate functions that are C'-continuous piecewise-cubic
polynomials with knots at integer locations. Such functions
can also be interpreted as cubic splines with double knots
on the integers. The effect of the double knot is to reduce
the degree of continuity (C?) of the classical cardinal cubic
splines by one, hence allowing sharp corners.

The space of functions generated by the Hermite spline
scheme is defined as

T
{s(r)=2[j,[[’§j]} dJ(t—k):S[k],S’[k]Efz(Z)} (an

keZ

with the vector @ = (¢1, ¢2). Due to the Hermite interpolation
conditions, the expansion coefficients s[k] and s’[k] in (11)
coincide with s(k), s’(k), the samples of the function and its
first derivative on the integer grid.

B. Connection With Classical Cubic and Quadratic Splines

In order to better understand the properties of the poly-
nomial Hermite-spline scheme, we here highlight its con-
nection with the classical cubic and quadratic splines. Our
way of establishing this link is to compute the Fourier
transforms of the Hermite-spline generators. We denote the
Fourier transform of a function f as f This yields

—~ _ 12(wsin w+2 cos w—2)
(o) = ["il(“’)} =[ o } (12)

4j(2w—3 sin w+w cos w
¢ (w) _A4iC n )

These equations can be rewritten in matrix-vector form as

$ (@) = RE) pw), (13)
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with
@] _[ Gor
P =2 =| (o 14
p(w) |:p2(w)i| [ﬁ i|, (14)
and
= o [24— 12770 — 12e1”  —6eI? + 6el?
RE™) = |: —6e71? 4 6el” -8 —2e7I — ¢l | (15

The vector p = (p1, p2), the inverse Fourier transform4of D,
contains the Green’s functions of the operators L = % and

L, = dL; which generate the classical cubic and quadratic
splines, respectively. From this, we show in Appendix A
that the cubic and quadratic B-splines can be expressed in
terms of ¢; and ¢». Thus, they are included in the family of
Hermite splines.

C. Uniqueness and Stability of the Representation

A given parametric curve should be uniquely defined by
its anchor points and control tangents, and numerical sta-
bility of the interpolation process should be ensured. These
two properties are summarized in the so-called Riesz-basis
condition for the generator ¢. By definition (see for instance
[26, Sec. 6.2.3]), the vector function d = (¢, ¢2) gener-
ates a Riesz basis if and only if there exist two constants
0 < A < B < +0o0 such that

Allalle, =

D alkl b —k)

keZ

< Bllall,,,  (16)

L

for all a[k] = (s[k],s'[k]), s[k],s'[k] € {2(Z), where
s[k] and s’[k] are the expansion coefficients of s(-) in the
Hermite basis. In Appendix B, we show by relying on
Fourier domain results that this condition is verified for the
Hermite splines.

D. Precise Reproduction of Curves

The difference between an arbitrary reference curve and
its cubic Hermite-spline model helps us define the quality of
approximation of our active contour. In particular, we want to
know at which rate the approximation error decreases when
approximating any function f € L2(R) with ¢ = (41, ¢2)
and its integer shifts.

As shown in Appendix A, one can reproduce both quadratic
and cubic polynomial splines using the cubic Hermite splines
(see (44) and (46)). It means in particular that the asymptotic
approximation properties of the Hermite spline space are at
least as good as those of the popular space of cubic splines.

It can actually be shown that the Hermite spline space
corresponds to the direct sum of the cubic and quadratic
spline spaces. It is then possible to apply the multifunction
analysis from [27], in particular Theorem 1, to the case of the
Hermite basis functions. By doing so, one can demonstrate
that the cubic Hermite splines have the same asymptotic
approximation order as the cubic polynomial splines.
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E. Smoothness Properties

Many parametric active contours come with inherent
smoothness properties [28], [29]. The associated snakes
therefore do not need to rely on additional energy terms
(called internal energies) to ensure smoothness of the contour.
This is of particular interest as internal energy terms are
observed to play a major role in practical applications [3], [30].

The smoothness properties of our Hermite splines are
related to Theorem 1, whose proof is given in Appendix C.

Theorem 1: Let s[k],s'[k] € €2(Z). Among all possible
functions f(¢), t € R with f, f/, f” € Lp(R) the optimal
one that minimizes

1771 .,

such that s[k] = f(k) and s'[k] = f/(k) for k € Z is the
Hermite interpolator s defined as

s(t) = D (sIklgi (¢ — k) + 5" [KI2 (1 — k).

keZ
Cubic Hermite splines are therefore optimal in the sense that
they minimize || f”|, ., which is a good approximation of the

A7)

|| Ly’
curvature [13]. It therefore holds the potential to eliminate
the need for an explicit internal energy term. If desired,
low curvature could therefore be guaranteed under some mild
conditions on the parametric curve in a similar fashion to cubic
spline snakes [13].

Our result is closely related to the well-known minimum-
norm property of cubic splines which states that, given a set of
nodes in an interval [a, b], the cubic-spline interpolator min-
imizes | ab | f”(z)|?dt among all interpolating functions f, as
shown with some variations in [31, Th. 3.1.1] and [12, Th. 1].

F. Connection With Bézier Representations

The presence of explicit tangents in our representation is
reminiscent of the Bézier curves which are popular in com-
puter graphics. We discuss now how these two representations
relate to one another through the use of Bernstein polynomials;
in particular, we show how to express Hermite splines in terms
of Bézier curves.

Let us consider the task of computing

s(t) = D (sklg1(t — k) + s'[KIgha(r — k)
keZ

fort € [n,n+1) and some n € Z. Definingu =t—n € [0, 1),
we simplify the expansion as

s(n + u) = s[nlg1 () + s'[nlga(u) + s[n + 111 (u — 1)
+5'[n+ o (u — 1) (19)

by retaining only the four Hermite basis functions that do
not vanish within the unit interval [0, 1). They are shown on
the top plot of Figure 3. Since s(n + u) for u € [0,1) is a
cubic polynomial by construction, we may express it using
the Bernstein polynomial basis which is also a basis of the
Bézier curves. The four Bernstein cubic polynomials are

bos) = (1 —u)’, bia(u) =3u(l —u),
by3(u) = 3u*(1 —u), b3s(u) =u’.

(18)

(20)

The conversion between the two types of representations is
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Fig. 3. Comparison of different polynomial bases on the unit interval [0, 1).
(Top) Restriction of the cubic Hermite basis on [0, 1). (Bottom) The four
cubic Bernstein polynomials.
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By plugging these expressions into (19), the Bézier represen-
tation of s(n + u) is

s(n +u) = pobo3(u) + p1b13(u) + paba 3(u) + p3b3 3(u),

(22)
with control values
1
po = snl, p1=snl+ §S’[n],
1
pr=sln+11—=s'ln+11, ps=sln+1]. (23)

3

From there, the extension to parametric curves in R2, which
is our principal interest for active-contours applications, is
straightforward. The 2-D curve given by

r(t) = [x(t) } = > (rlklp1(t — k) + r'[klga(t — b)),

(1)
keZ
(24)
where r'(1) = ( dflgt) , dﬁgt)) is the tangent vector of the curve,
can be expressed in Bernstein representation for each interval
[n,n+ 1) as

r(n+u) = pobo3(u) + p1b1,3(u) + pab23(u) + p3b3 3(u)

(25)
with control points
po = r[n], pi=rlnl+ %r’[n],
p=r[n+1]— %r’[n—i—l], p3=rln+1]. (26)

These four points define the control polygon that outlines the
shape of the underlying curve segment. Specifically, po = r[n]
and p3 = r[n + 1] are the start and end points, while the
corresponding tangent directions are indicated by the vectors
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pP1 — po = r'[n] and p3 — p2 = r'[n + 1], respectively. The
fact that the Bernstein basis is positive also ensures that the
curve segment is enclosed in the convex hull of the control
polygon, which is not the case for the Hermite basis.

The Hermite snake representation can therefore be easily
converted to a Bézier curve, but the converse is not true
in general. Indeed, by construction, Bézier curves can have
different left and right tangents. A Bézier curve therefore has
more degrees of freedom, but is also less regular. The increased
smoothness granted by the Hermite snake representation is
especially useful for practical applications, as it implies that
less parameters have to be optimized and one benefits from
additional intrinsic regularity.

IV. APPLICATIVE ASPECTS OF THE HERMITE SNAKE

We now present the particular features of the associated
Hermite snake. The two main novel aspects brought by our
Hermite construction are the ability to reproduce corners easily
and the possibility to design directional energy functionals.
Additional aspects are related to implementation and user
interactions.

A. Generation of Corners

An important feature of the Hermite snake is its ability to
reproduce corners with only one control point, something that
is not achievable with classical spline snakes.

To better understand how the Hermite-snake model enables
the generation of corners, we start by considering the prop-
erties that define this feature. A necessary condition for
introducing a corner at curvilinear coordinate fy is to set the
derivatives of the coordinate functions to

x' (1) = y'(10) = 0.

What we call corners are often referred to as singular
points [32].

It can be shown that in the cubic- and exponential-spline
snake cases, (27) can only be satisfied when all control points
lie on a straight line, which we refer to as a flat corner.
This situation is obviously of limited practical interest. The
Hermite snake, however, allows one to enforce (27) by setting
the tangent controls to zero at any arbitrary control point.
When all tangent controls in a Hermite snake are set to zero
(i.e., s'(k) = 0 for all k), it is not hard to show that 2

x(1)
is constant in [k, k + 1) for every k on the curve. In such
a situation, we are hence back to linear interpolation and
control points are linked by straight lines. Setting a non-
null tangent vector introduces smoothness on the curve at the
corresponding control point, as shown in Figure 4. Conversely,
in a curve composed of mostly non-zero tangent vectors,
setting one of them to zero results in a local roundish corner
as depicted in Figure 5.

As a more precise explanation, two situations allow creating
a true, non-flat corner. The local slopes in each coordinate
functions around the corner point can either be different or
equal to zero. The first situation with unequal local slopes
around the corner point implies that the second derivative—
of either coordinate function—contains a discontinuity. Cubic

27)



2808

0 0.5 1

2

G
0 0.5 1 2

(1)

Fig. 4.

05

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016

— z(t) v — 2'(t)
- = y(t) ‘ == y(t)
0 0.5 L5 2 t
‘\ ) || !
. 0 ' !
. N U
. i ]
st “ 'l
— (1)
-=-y(t)
DY AR
¢ .
¢ .
¢ N
4, .
LI

Generation of corners with the Hermite snake. Two 2-D curves are depicted as solid lines along with a plot of their coordinate functions and their

derivatives. The curves are parameterized by three control points (solid dots) and associated tangent vectors (arrows, set to vanish at r(0) and r(2)). The control

points of the two curves are identical, except for the tangent at r(1). When set to zero, it creates a discontinuity in x
does not vanish, the discontinuity disappears and a smooth curve is obtained.

t=1
1

y(t)

0.5 K
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0.5 1 1.5
(t)
-0.5
Fig. 5. Generation of roundish corners with the Hermite snake. Setting

x'(1) = y'(1) = 0 creates a corner. Although the surrounding control points
have non zero derivatives (represented by arrows), the local behavior around
the corner is conserved and yields a sharp discontinuity at r(1).

and exponential splines, and associated spline-snake curves,
are C? by construction at the joining points and hence have
continuous second derivatives. Hermite-spline snakes, on the
contrary, are C! at the joining points and therefore allow for
discontinuous second derivatives. It is still possible to generate
corners with cubic or exponential splines through the second
scenario, where slopes around the corner point are vanishing.
However, it implies for several control points to accumulate at
the same location on the 2-D plane. This corresponds to the
introduction of multiple knots in the spline curve, and thus
does not fit the spline-snake formalism relying on a sequence
of distinct control points.?

B. Directional Energy Functionals
The evolution of active contours is driven by the optimiza-
tion of a cost functional referred to as snake energy. Many

2The curve r(r) = (3, t2) is an example of this situation, with a corner
at r(0).

" and yields a sharp corner. When it

energy terms have been proposed in the literature [13], [33].
The specificity of the image-analysis problem usually drives
the choice of a given energy function, as it dictates the quality
of the result.

Relying on a spline formulation, the Hermite snake is ver-
satile enough to handle all traditional energy functionals used
with classical parametric and point-based snakes. The novelty
of our model lies in the direct expression of the tangents in
the snake formulation. This enables the definition of novel
energy terms imposing constraints on the local orientation of
the contour.

Given a snake curve S parameterized by r : [0, 1] — S, we
define the continuous directional snake energy functional as

1 r’
Edirectional = ——/ <9, — >' p(r)dr, (28)

LJs x|l
where © and p are some orientation and amplitude
information. The 2-D vector functions r = (x,y) and

r’ = (x/, ") correspond to the position and derivative of the

curve, respectively. The absolute value of the inner product
between © and the normalized r’, which appears as the
first term of the integrand, is large when the tangents of the
contour are locally aligned with the orientation given by ©.
The term p is a weight that favors locations corresponding to a
large amplitude of some chosen image-based feature. In order
to obtain a dimensionless energy, the line integral is finally
normalized by the length L of the curve. The whole expression
is set with a minus sign since the snake optimization is usually
defined as a minimization process.

The directional energy functional differs from classical
image-based energies by the addition of the term that enforces
0 and r’ to have the same orientation. The ability to constrain
the behavior of the derivative of the snake through the tangent
vectors increases the overall robustness of the segmentation.
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In cases where several patterns of interest are in close contact
or when dealing with object with complex shapes, magnitude
information might not be sufficient to properly segment the
contour.

The proposed directional energy functional (28) is general
enough to accommodate any image-wide functions © and p
providing orientation and amplitude information, respectively.
We here propose two different cases. We denote by f the input
image.

1) Image Gradient: The orientation and magnitude func-
tions are given by the classical 2D gradient orientation and

amplitude
of (x)
o(x) = arctan( 6}33;() ) ,
ox

2 2
o= () + (52

The resulting snake energy will tend to place the snake contour
in regions of high gradient amplitude (i.e., edges) and to align
its tangent vectors with the local orientation of the gradient.
As O tends to be noisy, this choice might not be robust in
practice.

2) Steerable Filters: Steerable filters offer a more refined
version of the directional energy functional. From [34], orien-
tation and magnitude can be defined as

0(x) = argmax ((f *h(Rp-)) (x)),
p(x) = (f *h(Rg")) (x),

where / is the detection template given by

Nk akfi ol
h(x) = Zzak,ima—yig(x)

k=0 i=0

(29)

(30)

€19
(32)

(33)

In (33), g is a Gaussian window and N is the order of the
detector. The features detected by & can be modified by acting
on N. An odd N yields edge detectors while an even N detects
ridges. In addition, filters built with large values of N have
a high SNR and good localization capabilities, the tradeoff
being the computational cost [34]. Finally, the orientation
information given by steerable filters is more precise than that
obtained using the Canny edge and Hessian ridge detectors.

C. Snake Optimization

For the sake of efficiency, the values of the Hermite
basis functions ¢; and ¢, are precomputed and stored in
lookup tables. This allows for a real-time response when
interacting with the anchor points and tangent vectors of
the snake. The subsequent automated optimization is carried
out in an efficient way relying on Powell-like line-search
methods [35]. This algorithm converges quadratically and
requires the computation of the derivatives of the energy
function with respect to the parameters (i.e., the coefficients
of the Hermite spline). Its speed can sometimes be increased
further by deriving a closed-form expression of the derivatives
of the snake energy. However, while it has been shown in [14]
that having an analytical expression for the energy gradient
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is especially useful when the number of parameters becomes
large, our snake is defined by a small number of parameters
(M anchor points plus M tangent vectors in 2D). Therefore,
the centered finite differences approach is satisfying in most
practical cases.

D. User Interaction

Open and closed snakes based on the Hermite-spline frame-
work have been implemented as open-source plugins for the
multiplatform software ImageJ [16]. They are freely available
on the Biomedical Imaging Group website.> Note that these
plugins are more complete and hold substantial changes com-
pared to the one published in [11].

Our Hermite active-contour model facilitates interaction
with the user in several ways. First, it relies on a smaller
number of control points than many other parametric snake
models. Then, since its construction involves basis functions
of small support, the snake is only locally affected by structural
changes. This implies that modifications of one control point
merely affect the curve in a small local neighborhood. Finally,
due to the interpolation properties of a Hermite spline, anchor
points truly lie on the actual contour on the snake.

We take advantage of this framework to provide an intuitive
user interface in which the position and shape of the snake
can be manually edited through manipulation of the control
points and associated handles that correspond to their tangents.
To this, we added the possibility to manually freeze control
points and/or tangent handles at specific locations (corners,
typically). When launching the automated optimization, the
frozen points are conserved while the rest of the curve auto-
matically adapts to follow the object of interest. As a result,
our method can be deployed interactively by combining steps
of snake initialization, optimization, and manual correction.

E. Implementation Details

The Hermite snake plugin is implemented as a direct
translation from the theory presented in Section II. More
precisely, snake curves are constructed making direct use
of equations (3) (for the open curve case) and (7) (for the
closed curve case). Since Hermite snakes are continuously
defined in our model and practical implementations lie in the
digital world, we rely on a discretization of the continuous
parameter ¢ at a fixed sampling rate. To speed up execution
time, samples of the basis functions ¢; and ¢, are also
precomputed and stored in lookup tables.

V. VALIDATION AND EXPERIMENTS

In this section, we carry out the following experiments to
demonstrate the practical usefulness of the Hermite snake.
We proceed in three steps. First, we compare the Hermite
snake against state-of-the-art parametric spline snakes. To do
so, we study both the introduction of sharp corners in the snake
curve and the result of segmentation in the presence and the
absence of a directional energy functional. Second, we quanti-
tatively study the robustness of our model to noise, change in

3http://bigwww.epﬂ‘ch/algorithms/hsnakes/
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the number of control points, and initial conditions relying on
Jaccard indices. Finally, we illustrate the use of the Hermite
snake in practice with four different sets of bioimages acquired
using brighfield, phase-contrast, differential-interference-
contrast (DIC), and scanning-electron microscopy. In the first
two parts, we rely on synthetic test images.

For all experimental results presented in this section, the
Hermite snake is solely driven by a directional energy func-
tional of the form (28), where the orientation and magnitude
information is given by a properly tuned steerable filter. Even
in the closed-curve case, we do not include any form of
region energy so as to be able to optimize both the open and
closed versions of the snake using the same functional. In the
literature, the snake energy is usually split into an external
energy term, which contains all data-driven functionals, and an
internal energy term encompassing the regularization energies.
In the present case, snake optimization is therefore only carried
out relying on an external energy term, which is equal to
Egirectional-

For the quantitative evaluation of the snake performance,
we rely on the Jaccard index J € [0, 1] defined as

_ |Sﬁ Sref|
|SU Sref|,

where Sper corresponds to the ground-truth region and S to
the region segmented by the snake. It therefore corresponds to
the percentage of similarity between the two regions computed
with a pixelwise discretization, 1 being perfect segmentation.
Note that because of the discretization, a Jaccard index of 1 is
almost never attained and 0.99 can be considered as accurate
segmentation.

(34)

A. Comparison With Existing Approaches

State-of-the-art spline snakes such as the cubic and expo-
nential ones [14] adhere to the same principles than the
Hermite snake, and provide therefore the most relevant com-
peting methods. Here, we show how the two novel features
granted by the explicit introduction of tangents in the
Hermite-snake model, namely, the ability to design directional
energy functionals and to reproduce corners, are advantageous
over existing models.

1) Reproduction of Corners: Cubic- and exponential-spline
snakes generate curves that are smooth by design. Sharp angles
can be approximated but require a large number of distinct
control points, as shown in Figures 6a and 6b. Conversely, the
Hermite snake is able to introduce sharp corners in curves
with only one control point, as illustrated in Figure 6c.
In this Figure, the cubic and exponential snakes are constructed
with 9 control points and yield a poor approximation of a sharp
tip. With 4 control points and associated tangent vectors, the
Hermite snake is perfectly able to recreate the tip of a drop-
like shape in Figure 6. As the stability of the optimization
process depends on the number of parameters, the Hermite
snake is less likely to diverge.

2) Directional Energy Functionals: The addition of orien-
tation information in the snake energy enhances the robustness
of the segmentation. It is of particular importance in the two
following situations: when the contour of the object of interest
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(b) (©

Fig. 6. Generation of sharp corners using (a) traditional cubic-spline snake,
(b) exponential-spline snake, and (c) Hermite-spline snake.

Fig. 7. Usefulness of orientation in the closed-curve case.(a) Snake initial-
ization for (b) and (c). (b) Segmentation result after optimizing a 16-point
exponential-spline snake with the ridge-based energy (35). (c) Segmentation
result after optimizing an 8-point Hermite snake with (28).

©

Fig. 8. Usefulness of orientation in the open-curve case.(a) Snake initial-
ization for (b) and (c). (b) Segmentation result after optimizing an 8-point
cubic-spline snake with the ridge-based energy (35). (c¢) Segmentation result
after optimizing a 4-point Hermite snake with (28). Frozen points are depicted
as disks.

contains rapid changes of orientation or has circonvolutions,
and when nearby objects are likely to attract the snake and
divert it. In both cases, information ignoring orientation might
be unable to provide a correct segmentation.

To illustrate this, we generated synthetic images represen-
tative of these two situations. Using the same initial curve,
we optimized a cubic, an exponential [14], and a Hermite
snake, and compared segmentation results. We carried out
all optimizations using a steerable filter designed to detect
ridges constructed following [34]. In the Hermite case, we
took advantage of (28). For the other snakes, we used the
magnitude information

1
Emagnitude = ——/P(l')dl‘, (35)
LJs
Traditional spline snakes do not include tangents in their para-
meterization. To perform a fair comparison and be consistent
in the number of parameters, we therefore endowed such
snakes with twice as many control points as the Hermite snake.
Results are shown in Figure 7 for the closed-curve case and
in Figure 8 for the open-curve case. One can observe that the
addition of orientation makes the snake more robust to the
presence of circonvolutions and of nearby objects.
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B. Model Validation

1) Degrees of Freedom: The number M of control points is
the main parameter of the Hermite-snake model. The choice
of M should be guided by the particular segmentation task
being considered, keeping in mind that larger values of M
grant flexibility to the snake and hence allow the reproduction
of more complex shapes, but also enlarge the search space
of the optimizer, which is therefore more likely to diverge
or reach local minima. A few control points are therefore
sufficient to segment smooth shapes well, while snakes with
large M tend to get entangled. For rougher, more complex
contours, snakes with more control points and hence more
degrees of freedom are required.

Since our purpose was to evaluate the adequacy of our
parametric snake model, we fixed the number of control
points for each experiment. There are also ways to choose the
number of control points automatically. For instance, one can
apply a multiresolution strategy and perform several rounds
of optimization starting from a snake with very few control
points, optimizing it, resampling the resulting curve with more
control points, further optimizing, and iterating in this way
until the snake energy at convergence stops decreasing. We did
not study such approaches here to avoid overloading the paper.

2) Dependence on the Initial Conditions: Another important
aspect is the initial snake curve from which the automated opti-
mization process is started. A rough sketch should be sufficient
since the optimization process takes care of precisely adapting
it to the object boundary. Circular or oval shapes for closed
snakes and broken lines for open ones are common initial
contours. Another important aspect to consider is that the
nature of the chosen energy term influences the convergence
of snakes.

3) Robustness to Noise: We investigated the robustness
of the Hermite snake to noise in the image as a function
of the number of coefficients M. We created two synthetic
images, one for the closed- and one for the open-curve case.
We generated 100 realizations of these images in different
PSNR conditions by adding a mixture of Gaussian and Poisson
noises. Median Jaccard indices for each experimental setting
are presented in Table I. Snake initializations are overlaid
in the thumbnails which depict the noise-corrupted images.
In the closed-curve case, one observes that the performance of
the snake degrades faster for large number of control points
as the amount of noise increases. This can be explained by
the presence of local minima that are induced by noise for
snakes with large M. In the open-curve case, the decrease
in performance for low PSNR is more gradual due to the
imposition of curve extremities, which reduces the risk of
entanglement for large values of M.

4) Considerations on Execution Time: The automated opti-
mization of the Hermite snake from a given initial curve runs
in real time. The optimization process can either be clamped to
a given number of iterations or can be left running until a min-
imum is found. The time required for optimization is affected
by the number of control points. The change in execution time
is however hardly noticeable for a reasonable range of control
point values (i.e., M = 2,...,10). The number of manual
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clicks required to get an appropriate segmentation depends
both on the initial shape and on the eventual corrections to
perform after automated optimization. It remains significantly
lower than manual segmentation.

C. Segmentation of Bioimages

We here provide insights into the capabilities of the Hermite
snake to segment bioimages. As we do not possess ground-
truth information for the images presented in this section,
we only rely on qualitative assessments for the quality of
segmentation. For comparison purpose, we also provide results
obtained using classical spline snakes. We rely on cubic spline
snakes for the open curve case, and on exponential spline
snakes [14] for the closed curve case. In all experiments,
we use the same initialization and then let the snakes evolve
automatically until convergence. To account for the fact that
Hermite snakes have twice more parameters per control points,
we doubled the number of control points for the classical
snakes.

1) Detection of Medial Axis in Nematodes: The task in this
experiment is to get a good approximation of the medial axis of
the purely enteric worms Heligmosomoides polygyrus bakeri
(H. bakeri).* The unstained worms appear as translucent with
uneven interior. Depending on experimental conditions, the
worms are either “clean” or get cluttered by immune cells.
By adapting the number of control points to the complexity
of the worm shape and initializing open Hermite snakes with
simple broken lines, we were able to accurately detect the
medial axis, as shown in Figure 9. Snake optimization was
carried out relying on (35) for cubic spline snakes, and on
the proposed directional energy functional (28) for Hermite
snakes, using in both cases properly tuned ridge-sensitive
steerable filters. As they do not incorporate any directional
information, the cubic spline snakes are more likely to get
trapped in local minima and yield a less good estimation of
the medial axis.

2) Segmentation of Phase-Contrast Microscopic Images:
We segmented phase-contrast microscopic images of
HeLa cells from [36]. Phase-contrast images are challenging
for segmentation as they feature uneven gradients and halos
around objects. We initialized closed Hermite snakes with
rough polygonal shapes around the cells, setting the number
of control points as the number of edges in the polygon.
Tangents at each points were initially set to zero. We then
optimized the exponential snakes on (35) and the Hermite
snakes on the directional energy functional (28), both using an
edge-sensitive steerable filter for the magnitude information.
Results are displayed in Figure 10. Note that orientation
information is of particular importance in these images as
cell shapes exhibit fine details, in analogy with the synthetic
example of Figure 7.

3) Segmentation  of  Differential-Interference-Contrast
Images: Similar to phase-contrast microscopy, differential
interference contrast (DIC) microscopy yields images
where object boundaries are uneven due to shading effects.

4Images courtesy of J. Esser, Laboratory of Intestinal Immunology, Ecole
polytechnique fédérale de Lausanne (EPFL), Switzerland.
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TABLE I
JACCARD INDEX FOR NOISY DATA IN THE CLOSED- AND OPEN-SNAKE CASES, AS A FUNCTION OF M

ol

PSNR = 8dB

T

PSNR = 6dB

M | PSNR=ocodB  PSNR = 11dB PSNR = 5dB
o
< 3 0.98 0.72 0.78 0.61 0.58
S 4 0.98 0.72 0.75 0.59 0.48
B 5 0.93 0.79 0.86 0.65 0.49
g 6 0.96 0.85 0.69 0.51 0.37
© 7 0.92 0.77 0.63 0.54 0.43
8 0.93 0.62 0.59 0.42 0.29

PSNR = 6dB PSNR = 5dB

© M | PSNR = codB PSNR = 11dB PSNR = 8dB

_é 4 0.93 0.87 0.75 0.64 0.46

(’g’ 5 0.92 0.87 0.76 0.68 0.41

8 6 0.95 0.95 0.75 0.66 0.42

o 7 0.97 0.96 0.75 0.67 0.48
8 0.92 0.92 0.72 0.65 0.43

Fig. 9. Outline of H. bakeri medial axis using open Hermite snakes in clean
(top rows) and cluttered cases (bottom rows). From left to right: original
image, snake initialization, automated segmentation using a classical cubic
B-splines snake, automated segmentation using the Hermite snake. Frozen
points are depicted as disks.

We obtained images of pancreatic acinar cells of live
guinea pigs from the Cell Image Library® and initialized
circular closed Hermite snakes inside each cell. Each snake
contained 5 control points and their associated tangents for
Hermite snakes. Relying on (35) for exponential snakes and
on our directional energy functional (28), both using an
edge-sensitive steerable filter, we obtained the segmentation
results shown in Figure 11. Here again, the possibility to

5Image corresponding to [37, Fig. 1], freely accessible from the Cell Image
Library (http://www.cellimagelibrary.org/), accession number CIL:37314.

=4 = |
2

Fig. 10. Segmentation of phase-contrast images of HeLa cells using
closed Hermite snakes. From left to right: original image, snake initialization,
automated segmentation result using a classical spline-snake [14], automated
segmentation result using the Hermite snake.

Fig. 11.

Segmentation of differential-interference-contrast images of animal
pancreatic acinar cells using closed Hermite snakes. From left to right: original
image, snake initialization, automated segmentation result using a classical
spline-snake [14], automated segmentation result using the Hermite snake.

add orientation information is crucial to constrain the overall
shape of the snake in areas where cells touch each other and
where little gradient information is available, similarly to the
situation in Figure 8.

4) Outline of Polygonal Cells: Finally, we analyzed
scanning-electron micrograph of the epidermal surface of
lamprey larvae.® The image features microvilli that outline the
polygonal borders between cells, while short microvilli cover

6Image from [38], freely accessible from the Cell Image Library, accession
number CIL:11115.
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Fig. 12.  Outline of borders of epidermal cells using closed Hermite snakes.
From left to right: original image, snake initialization, automated segmentation
result using a classical spline-snake [14], automated segmentation result using
the Hermite snake. Frozen points are depicted as disks.

the external surface in a reticular network. The motivation
for using Hermite snakes in these data is the presence of
polygonal cells with sharp corners. We therefore initialized
closed Hermite snakes inside the cells and manually imposed
some critical corners. The number of control points was tuned
depending on the complexity of each cell. We similarly ini-
tialized exponential snakes and imposed the same fixed points.
The exponential snake curves were composed of at most twice
more control points than the corresponding Hermite snakes
in order to allow for the same curve flexibility. The snakes
were then automatically optimized. As shown in Figure 12, the
Hermite snake is able to properly segment both smooth and
polygonal cell. It can hence better accommodate biological
variability than active contours that are uniformly smooth
by construction and therefore require many control points to
generate discontinuities, which in turn increases the risk of
entanglement.

VI. CONCLUSIONS

We introduced in this paper a new snake that relies on
interpolating Hermite splines. Our model is able to handle
open and closed 2-D curves that can be used for the semi-
automated segmentation of bioimages. The novel feature of
our Hermite snake is the explicit introduction of tangent
controls in the contour. The advantages are twofold. Firstly,
it allows for sharp corners in the active contour. Secondly,
it enables the design of directional energy functionals to
better guide the snake during automated segmentation. On the
theoretical side, we have provided a formal exploration of
the Hermite snake construction. We motivate its practical
usefulness and highlight its connections with existing contour
representations. On the practical side, we have compared our
model against existing ones and studied its dependency on
various parameters. Finally, we have showed its practical
usefulness in different bioimage data where the use of the
Hermite snake is of particular interest. There, we observed that
Hermite snakes perform better than their classical counterparts
when the intensity information is ambiguous or not sufficiently
uniform, or when objects exhibits sharp corners. This can be
attributed to the joint use of the proposed snake model and
directional energy functional.

We conclude with some remarks about the limitations of our
model and possible future work. The tangent vectors of the
Hermite snake grant more flexibility to the curve and enable
the generation of corners. However, they also results in a large
number of parameters. The Hermite snake must thus be prop-
erly constrained during optimization. The proposed directional

2813

energy functional fulfills this task, but existing energies for
classical spline snakes that do not include tangents are likely
to be insufficient for preventing the snake from diverging.
Future work around the Hermite snake would therefore include
deriving more energy functionals involving tangents and, more
generally, proposing internal energies regularizing the behavior
of the tangent field of our model.

APPENDIX A
LINK WITH CLASSICAL SPLINES

Relying on the well-known link between the Green’s
function of a given operator and its associated spline [39],
we aim here at stating the relation between the Hermite
spline generators ¢ = (¢1,¢2) and p = (pps, Pp3),
which are the Green’s functions of the operators that
are associated to the classical cubic and quadratic
splines (D4 = (% and D3 = d%z, respectively). The explicit
expressions of their Green’s functions are

1 1

ppi(t) = F! [W] t) = Eﬁsgnm, (36)
1 1

pp3 (1) = F~! [W] (1) = thsgn(t). (37)

By inverting the (2 x 2) Fourier matrix ﬁ(ej“’) from (15), we
find that

B(@) =RE@) ™" d(w).

Since ﬁ(ej“’)’1 = §(ej”) has entries that are ratios of trigono-
metric polynomials, its discrete-time inverse Fourier transform
is well-defined and guaranteed to yield a unique sequence
of matrices S[k] = ﬁ f:f §(ejw) el dw of slow growth.
Hence, we conclude that

p(1) =D SIklb(r — k).

keZ

(38)

(39)

which proves that the Green’s functions pps+ and pp3, as
well as their integer shifts, can be perfectly reproduced by
{d(- — k)}rez- The specific form of (39) then follows from
the interpolation property of the generators; that is, the relation

s(t) =D (s()1(t — k) + 5" (K)ot — b)),

keZ

(40)

which is valid for any function in the span of the cubic Hermite
splines. In particular, we have that

1
pp(1) EfSSgn(f)

1
>, (Ek%gn(k)qsl (t — k)

keZ
1
+ Zkzsgn(k)g’)z(t —k)). (41)

It is known [26] that a cardinal cubic spline admits a unique
stable expansion of the type

s(t) = > alklpp(t — k),

keZ

(42)
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where a is a sequence of coefficients of slow growth. This
hence implies that the space of cubic Hermite splines includes
Schoenberg’s space of cubic splines as a subspace. The same
holds true for the quadratic splines which are generated by

{Pp3 (- = K)}kez.-
Based on (13), we can express ¢| as

$1 = 12A% pps + 644 pps. (43)

The expression of ¢, in terms of pps+ and pps can be
obtained through an analogous calculation. We conclude that
the Hermite spline space can be seen as a space of cubic
splines that can accommodate quadratic spline-like transitions.

The causal cubic B-spline can then be written in the two
following equivalent ways

BL@) = AL ppa(t)
= LD -2 F hi D)

£ 3br 1)~ 1t —), (44

where Ai is the 4th-order finite-difference operator with
A4 f(t) = f(t) — f(t — 1). Since the cubic B-splines repro-
duce the polynomials of degree 3, the property automatically
extends to the Hermite spline space, which yields

"= (K"pi(t — k) +mk™ ot — k)

keZ

(45)

for m = 0,1,2,3. Similarly, we can make use of the
Hermite interpolation property (40) to obtain the correspond-
ing expression for the quadratic B-spline,

BL(6) = A% pps (1)

= 21— 1)+ 3h1 =D+ alt— 1) G~ ),
(6)

which is supported in [0, 3].

The above expressions help us understand another remark-
able property of the Hermite spline space with respect to
the theory of conventional splines. In the case of the cubic
splines, a compactly supported basis function (i.e., a B-spline)
is constructed by applying the discrete version Ai of the
operator D* to its Green’s function pps, as described by (44).
Quadratic B-splines are constructed in the same way by
applying the discrete version Ai of the operator D3 to the
Green’s function pp3. While either of the functions AipDéx
and A pp3 is only partially localized and still includes a linear
trend, the combination of both results in the cancellation of all
residual polynomial components. Consequently, the Hermite
basis functions have a support of size 2, which is shorter than
the classical B-splines.

APPENDIX B
RIESZ-BASIS PROPERTY

The Riesz basis property is best verified in the Fourier
domain. To that end, we first compute the Fourier Gram matrix
of the basis, which is given by

G (&)
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=> @ +210) b +21k)"
keZ
Db g — keI D (1, pa (- — k)e I
— keZ ) keZ )
D (b1 — kNI D i, o (- — k))e I
L keZ keZ
26 , 9ei® | 9e® 13e79® | 13ei®
| wBt5 T i T @7
- 13e73® _ 136 2 e &2
L 420 420 105 140 140

The Gram matrix G(eiw) is Hermitian symmetric and
2z -periodic in w. Next, we recall that the Fourier equivalent
of the Riesz-basis requirement (16) is
0< A=

min Amin(e) < max Amax(€”) = B? < 400,
wel0,7] wel0,7]

(48)

where Amax(€/?) and Amin(e’”) denote the maximum and
minimum eigenvalues of (A}(ej“’) at frequency w, respectively.
Moreover, the constants A and B in (48) are the optimal
ones. This result is classical for the case of a single gen-
erator ¢; see for instance [40], [41]. In that case, we have
Amin (@) = Amax (6°) = > |9(w + 27k)|*. The case of
several generators, which is required in the Hermite scenario,
is covered by [42, Th. 2.1]. Knowing the Gram matrix (47),
we simply compute the minimum and maximum eigenvalues
and take the supremum and infimum among @ € [0, 7]. The
calculation yields the exact value of the Riesz bounds, namely

(A, B) = (21072, 1), (49)

with the worst case of (48) being found at w = 0.

APPENDIX C
INHERENT SMOOTHNESS PROPERTY

We here give the proof of Theorem 1. First, we have
to ensure that the Hermite interpolant s(-) exists for fixed
s[-], s’[-] and is uniquely defined. This is already ensured
by Schoenberg’s work dedicated to the cubic Hermite
splines [23], [43]. Then, we have to show that, for any f
satisfying the two interpolation constraints f (k) = s[k] and
f(k) = s'[k], we have

ID*£117, = ID%s117, + ID*(f — 917, (50)

where D? denotes the second derivative operator 51722. Hence,
if f = s, the second term in (50) vanishes, implying that s
is optimal among all solutions that interpolate f. Let us take
g = f —s. Then,
ID*g + Ds]|7, = D%}, + 2(D%s, D*g), + ID*gl17,.
(5D
and proving (50) reduces to demonstrating that
(D%5,D%*g)1, = 0. (52)
By definition, s is given by

s(t) = D (sIklg1(t — k) + s'[Klga(t — k)

keZ
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=41 %D stk1o¢ — k) ) ()

keZ

+ | d2% D s k16C = k) | (@),

keZ

where x denotes the continuous convolution and ¢ is
Dirac’s delta. In the Fourier domain,

F(@) = $1(@)$1 ) + $2() ()
_ T S1(e")

with §;(el®), S»(e!”) the discrete Fourier transforms of the
sequences s and s’, respectively. Since, from (38)

(53)

(54)

$(©) = R(E”)p(w) = R(E?) [ JH Poi(@),  (55)
then

T .
~ov— | U a BT (e | S1(E7)
In addition, we note that (D?s, DZg)L2 = (s, (D2)>k DZg)L2 =
(s,D*g)r,. Also, let us remind that jwg(w) = g'(w). Then,
relying on Parseval’s theorem and on the Cauchy-Schwarz
inequality,

(s.D*) 1,
- L / F() () (@)do
27 JR

1 1V o7 0 [S169) ] -
=3 R|:J.@:| R (¢ )I:Sz(ejw)i|g(a))dw

e [S1E@)] [ 2@
= 2 R<R(e] )[Sz(ej‘“)} [g’(w)DLz dev

1 27 - N
- E/o A )Igzlg(ahLan)dw

1 2 . R
+E/0 B(ej‘“)lgzlg/(w—f-an)dw

1A ) L0200 | D &l + 2k)
keZ

IA

Ly([0,27])

x |BE™) L0201 | D & (@ + 2kn) . (7

keZ Ly([0,27])
where A = ﬁllSl —i—ﬁlgSz and B = ﬁzlSl—i—R\zzSz. The terms
| AllL,(10,271) and || Bl 1,((0,277) are bounded as the four entries
of R given by (38) have finite L, norms, and the S (el?),
S>(el”) are discrete-time Fourier transforms of sequences
s,s" € €»(Z). Finally, since ¢ = f — s and f(n) = s(n),
f'(n) = s’(n) for all n € Z, one has by Poisson formula

> 2w +2kn) =D gme " =0, (58)
keZ keZ
> g@+2%kn) =D ¢ (me " =0. (59)
keZ keZ

This concludes the proof of Theorem 1.

2815

ACKNOWLEDGMENT

The authors would like to thank members of the Biomedical
Imaging Group R. Delgado-Gonzalo and D. Schmitter for
fruitful discussions about the structure of the manuscript.

REFERENCES

[1] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321-331, Jan. 1988.

[2] R. Delgado-Gonzalo, V. Uhlmann, D. Schmitter, and M. Unser, “Snakes
on a plane: A perfect snap for bioimage analysis,” IEEE Signal Process.
Mag., vol. 32, no. 1, pp. 41-48, Jan. 2015.

[3] A. K. Jain, Y. Zhong, and M.-P. Dubuisson-Jolly, “Deformable template
models: A review,” Signal Process., vol. 71, no. 2, pp. 109-129,
Dec. 1998.

[4] S. Menet, P. Saint-Marc, and G. Medioni, “Active contour models:
Overview, implementation and applications,” in Proc. IEEE Int. Conf.
Syst., Man Cybern. (SMC), Los Angeles, CA, USA, Nov. 1990,
pp. 194-199.

[5] N.Ray, B. Chanda, and J. Das, “A fast and flexible multiresolution snake
with a definite termination criterion,” Pattern Recognit., vol. 34, no. 7,
pp. 1483-1490, 2001.

[6] L. D. Cohen and R. Kimmel, “Global minimum for active contour
models: A minimal path approach,” Int. J. Comput. Vis., vol. 24, no. 1,
pp. 57-78, Aug. 1997.

[71 M. A. T. Figueiredo, J. M. N. Leito, and A. K. Jain, “Unsupervised
contour representation and estimation using B-splines and a minimum
description length criterion,” IEEE Trans. Image Process., vol. 9, no. 6,
pp. 1075-1087, Jun. 2000.

[8] B. Li and S. T. Acton, “Active contour external force using vector
field convolution for image segmentation,” IEEE Trans. Image Process.,
vol. 16, no. 8, pp. 2096-2106, Aug. 2007.

[9]1 N.Ray and S. T. Acton, “Motion gradient vector flow: An external force
for tracking rolling leukocytes with shape and size constrained active
contours,” I[EEE Trans. Med. Imag., vol. 23, no. 12, pp. 1466-1478,
Dec. 2004.

[10] W. Dahmen, B. Han, R.-Q. Jia, and A. Kunoth, “Biorthogonal multi-
wavelets on the interval: Cubic hermite splines,” Constructive Approx.,
vol. 16, no. 2, pp. 221-259, Feb. 2000.

[11] V. Uhlmann, R. Delgado-Gonzalo, and M. Unser, “Snakes with tangent-
based control and energies for bioimage analysis,” in Proc. 11th
IEEE Int. Symp. Biomed. Imagi., Nano Macro (ISBI), Beijing, China,
Apr./May 2014, pp. 806-809.

[12] P. Brigger, J. Hoeg, and M. Unser, “B-spline snakes: A flexible tool
for parametric contour detection,” IEEE Trans. Signal Process., vol. 9,
no. 9, pp. 1484-1496, Sep. 2000.

[13] M. Jacob, T. Blu, and M. Unser, “Efficient energies and algorithms
for parametric snakes,” IEEE Trans. Image Process., vol. 13, no. 9,
pp. 1231-1244, Sep. 2004.

[14] R. Delgado-Gonzalo, P. Thévenaz, C. S. Seelamantula, and M. Unser,
“Snakes with an ellipse-reproducing property,” IEEE Trans. Image
Process., vol. 21, no. 3, pp. 1258-1271, Mar. 2012.

[15] R. Kimmel and A. M. Bruckstein, “Regularized Laplacian zero crossings
as optimal edge integrators,” Int. J. Comput. Vis., vol. 53, no. 3,
pp. 225-243, Jul. 2003.

[16] M. D. Abramoff, P. J. Magalhdes, and S. J. Ram, “Image processing
with Imagel,” Biophoton. Int., vol. 11, no. 7, pp. 36-42, Jul. 2004.

[17] M. Unser, “Sampling—>50 years after Shannon,” Proc. IEEE, vol. 88,
no. 4, pp. 569-587, Apr. 2000.

[18] R. Delgado-Gonzalo and M. Unser, “Spline-based framework for
interactive segmentation in biomedical imaging,” IRBM—Ingénierie
Recherche Biomédicale/BioMed. Eng. Res., vol. 34, no. 3, pp. 235-243,
Jun. 2013.

[19] W. M. Neuenschwander, P. Fua, L. Iverson, and G. Székely, and
O. Kiibler, “Ziplock snakes,” Int. J. Comput. Vis., vol. 25, no. 3,
pp. 191-201, Dec. 1997.

[20] Y. Y. Wong, P. C. Yuen, and C. S. Tong, “Segmented snake for contour
detection,” Pattern Recognit., vol. 31, no. 11, pp. 1669—-1679, Nov. 1998.

[21] M. B. Smith, H. Li, T. Shen, X. Huang, E. Yusuf, and D. Vavylonis,
“Segmentation and tracking of cytoskeletal filaments using open active
contours,” Cytoskeleton, vol. 67, no. 11, pp. 693-705, Nov. 2010.

[22] J. Melonakos, E. Pichon, S. Angenent, and A. Tannenbaum, “Finsler
active contours,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 3,
pp. 412423, Mar. 2008.



2816

[23] P. R. Lipow and I. J. Schoenberg, “Cardinal interpolation and

spline functions. IIIl. Cardinal Hermite interpolation,” Linear

Algebra Appl., vol. 6, pp. 273-304, 1973. [Online]. Available:

http://www.sciencedirect.com/science/journal/00243795/6/supp/C

V. Uhlmann, R. Delgado-Gonzalo, C. Conti, L. Romani, and M. Unser,

“Exponential Hermite splines for the analysis of biomedical images,” in

Proc. 39th IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),

Florence, Italy, May 2014, pp. 1631-1634.

C. Conti, L. Romani, and M. Unser, “Ellipse-preserving Hermite

interpolation and subdivision,” J. Math. Anal. Appl., vol. 426, no. 1,

pp. 211-227, Jun. 2015.

[26] M. Unser and P. D. Tafti, “Splines and wavelets,” in An Introduction to
Sparse Stochastic Processes. Cambridge, U.K.: Cambridge Univ. Press,
Oct. 2014, ch. 6, pp. 112-148.

[27] T. Blu and M. Unser, “Approximation error for quasi-interpolators and

(multi-)wavelet expansions,” Appl. Comput. Harmon. Anal., vol. 6, no. 2,

pp. 219-251, Mar. 1999.

A. Chakraborty, L. H. Staib, and J. S. Duncan, “Deformable boundary

finding in medical images by integrating gradient and region informa-

tion,” IEEE Trans. Med. Imag., vol. 15, no. 6, pp. 859-870, Dec. 1996.

[29] L. H. Staib and J. S. Duncan, “Boundary finding with parametrically
deformable models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14,
no. 11, pp. 1061-1075, Nov. 1992.

[30] J. Gao, A. Kosaka, and A. Kak, “A deformable model for human organ
extraction,” in Proc. IEEE Int. Conf. Image Process. (ICIP), vol. 1.
Chicago, IL, USA, Oct. 1998, pp. 323-327.

[31] J. Ahlberg, E. Nilson, and J. Walsh, “Intrinsic properties of cubic

splines,” in The Theory of Splines and Their Applications (Mathematics

in Science and Engineering), vol. 38. New York, NY, USA: Academic,

1967, pp. 75-108.

G. B. Arfken, Mathematical Methods for Physicists, 3rd ed. Orlando,

FL, USA: Academic, 1985.

[33] R. Ronfard, “Region-based strategies for active contour models,” Int. J.
Comput. Vis., vol. 13, no. 2, pp. 229-251, Oct. 1994.

[34] M. Jacob and M. Unser, “Design of steerable filters for feature detection

using canny-like criteria,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 26, no. 8, pp. 1007-1019, Aug. 2004.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge,

U.K.: Cambridge Univ. Press, 1986, p. 818.

[36] E. Bostan, E. Froustey, B. Rappaz, E. Shaffer, D. Sage, and M. Unser,

“Phase retrieval by using transport-of-intensity equation and differential

interference contrast microscopy,” in Proc. IEEE Int. Conf. Image

Process. (ICIP), Paris, France, Oct. 2014, pp. 3939-3943.

A. Amsterdam and J. D. Jamieson, “Structural and functional charac-

terization of isolated pancreatic exocrine cells,” Proc. Nat. Acad. Sci.

USA, vol. 69, no. 10, pp. 3028-3032, Oct. 1972.

[38] W. H. Fahrenbach and D. D. Knutson, “Surface adaptations of the
vertebrate epidermis to friction,” J. Investigative Dermatol., vol. 65,
no. 1, pp. 3944, Jun. 1975.

[39] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE

Signal Process. Mag., vol. 16, no. 6, pp. 22-38, Nov. 1999.

A. Aldroubi, M. Unser, and A. Aldroubi, “Sampling procedures in

function spaces and asymptotic equivalence with Shannon’s sampling

theory,” Numer. Funct. Anal. Optim., vol. 15, nos. 1-2, pp. 1-21, 1994.

A. Aldroubi and K. Grochenig, “Nonuniform sampling and reconstruc-

tion in shift-invariant spaces,” SIAM Rev., vol. 43, no. 4, pp. 585-620,

Dec. 2001.

A. Aldroubi, “Oblique projections in atomic spaces,” Proc. Amer. Math.

Soc., vol. 124, no. 7, pp. 2051-2060, Jul. 1996.

I. J. Schoenberg and A. Sharma, “Cardinal interpolation and spline

functions V. The B-splines for cardinal Hermite interpolation,” Linear

Algebra Appl., vol. 7, no. 1, pp. 1-42, Jan. 1973.

[24]

[25]

(28]

(32]

[35]

[37]

[40]

[41]

[42]

[43]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 6, JUNE 2016

Virginie Uhlmann received the M.Sc. degree in bio-
engineering from the Ecole Polytechnique Fédérale
de Lausanne (EPFL), Switzerland, in 2012, where
she is currently pursuing the Ph.D. degree with
the Biomedical Imaging Group under the direc-
tion of M. Unser. She completed her master’s
thesis in the Imaging Platform with the Broad
Institute, Cambridge, MA, under the supervision
of A. Carpenter. She is working on applied problem
related to image segmentation and tracking, and
on approximation and spline theory. Her research
interests include image processing, computer vision, machine learning, and
life sciences.

She received the competitive Excellence Fellowship at the Master’s level
from EPFL in 2011 and 2012, and the Best Student Paper Award from
the 2014 IEEE International Conference on Image Processing. She also
received a Best Student Paper Award Nomination from the IEEE International
Symposium on Biomedical Imaging in 2015.

Julien Fageot received the degree from Ecole
Normale Supérieure, Paris, France, in 2012, the
M.Sc. degree in mathematics from the Université
Paris-Sud, France, in 2009, and the M.Sc. degree in
imaging science from the Ecole Normale Supérieure,
Cachan, France, in 2011. He is currently pursu-
ing the Ph.D. degree with the Biomedical Imaging
Group under the direction of M. Unser. He is mainly
working on random processes and their applications
to signal processing. His research interests include
stochastic models for sparse signals and spline

Michael Unser (M’89-SM’94-F’99) is currently a
Professor and the Director of Biomedical Imaging
Group with the Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland. His primary area
of investigation is biomedical image processing.
He is internationally recognized for his research
contributions to sampling theory, wavelets, the use
of splines for image processing, stochastic processes,
and computational bioimaging. He has authored
over 250 journal papers on those topics. He has

) authored the book entitled An Introduction to Sparse
Stochastic Processes (Cambridge University Press, 2014) with P. Tafti.
From 1985 to 1997, he was with the Biomedical Engineering and Instru-
mentation Program, National Institutes of Health, Bethesda, USA, conducting
research on bioimaging.

He was the Associate Editor-in-Chief (2003-2005) of the IEEE TRANSAC-
TIONS ON MEDICAL IMAGING. He is a member of the Editorial Boards of
SIAM Journal on Imaging Sciences, the IEEE Journal on Selected Topics in
Signal Processing, and Foundations and Trends in Signal Processing. He is
the Founding Chair of the Technical Committee on Bio Imaging and Signal
Processing of the IEEE Signal Processing Society.

Prof. Unser was a EURASIP Fellow (2009), and is a member of the Swiss
Academy of Engineering Sciences. He is a recipient of several international
prizes, including three IEEE-SPS Best Paper Awards and two Technical
Achievement Awards from the IEEE (2008 SPS and EMBS 2010).





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


