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ABSTRACT

We designed two efficient and user-friendly tools for the seg-
mentation and analysis of images containing chromosomes
or, more generally, rod-shaped elements that are spread on
microscopic slides. The segmentation tool allows to auto-
matically extract the profile of each chromosome and to sort
the collection of profiles in a karyotype image. The analysis
tool is interactive and allows to extract quantitative measure-
ments and annotate the relative position of the centromere to
the chromosome extremities in a fast and reproducible way.
The two methods rely on custom variants of parametric active
contours. Both have been designed as user-friendly plug-ins
for the open-source software ImageJ.

Index Terms— Active contours, segmentation, chromo-
somes, image analysis.

1. INTRODUCTION

Karyotyping is an important operation for genetic analyses
such as species or gender determination of eukaryotic cells
and organisms. It is based on the analysis of the number and
morphology of chromosomes that become compacted into
rod-like structures during metaphase, the first short phase of
the cell division process. More generally, the assessment of
chromosomal size as well as the analysis of shape parameters
(such as centromere position and sizes of chromosome arms)
through the microscopic analysis of metaphase spreads is a
widely applied technique for the study of genomic structure,
organization, function and evolution in different fields of
biological and environmental sciences [1, 2, 3].

Automated computer-based chromosome analysis tools
have been developed since the seventies, including early
methods based on densitometric scanning of standard pho-
tographs [4, 5]. These approaches remained anecdotic due
to the poor computational power available at the time. More
recently, the availability of multi-purpose open-source image
analysis softwares enables biologists to process and anno-
tate chromosome images. However, most of the processing
is still performed in a fully-manual fashion, accounting for
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Fig. 1. Chromosome segmentation and analysis pipeline.
Raw image (top left), chromosome annotation using the an-
notation tool (top left), and karyotype image generated from
the raw image using the segmentation tool (bottom).

large amount of operator time as genetic experiments usually
involve large collections of data.

In this paper, we present a relatively simple and cost-
effective method based on digital image processing for kary-
otyping and performing chromosome analysis (Figure 1). We
designed two pieces of software that can be used together or
separately in order to segment and analyze chromosome im-
ages. First, the segmentation tool aims at extracting the im-
age profile of each chromosome and sorting them by size in
a karyotype image. The underlying algorithm relies on stan-
dard image processing methods along with a custom model
of parametric active contours. More precisely, it is composed
of four steps: image normalization, detection of candidate re-
gions via data clustering and pruning, outlining with active
contours, and extraction of the profile of the chromosomes.
Then, the analysis tool allows to precisely extract numeri-
cal measurements such as lengths and centromere positions
in images of chromosomes. The output is provided in a stan-
dard format to allow further data processing. The approach is
mostly automated and requires minimum user input. Thus, it
reduces the intra- and inter-user variability and speeds up the
annotation process.

Both tools have been programmed as plug-ins for Im-
ageJ, which is a free open-source multiplatform Java image-
processing software [6]. They do not depend on any special-
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ized hardware and, through ImageJ, any common image for-
mat may be used. The two plug-ins are freely available on-
line along with their companion user manual1. We dedicate
this paper to the description of the algorithmic details of the
segmentation tool (Section 2) and of the annotation tool (Sec-
tion 3). Both softwares have already been successfully used
for practical applications in biology [7], significantly speed-
ing up the image analysis and data extraction steps.

2. DETECTION AND SEGMENTATION OF THE
CHROMOSOMES

In this section, we provide the algorithmic details of the seg-
mentation tool, which extracts the chromosomes and gathers
them in a karyotype image containing the different chromo-
somes sorted by size.

2.1. Image Normalization

To improve the robustness of the segmentation, the image is
first locally normalized to zero mean and unit variance over
some neighborhood. This process is repeated in sliding fash-
ion over the whole image. This is especially useful to correct
for nonuniform illumination or shading artifacts. The estima-
tion of the local mean and standard deviation is performed
through local spatial smoothing using fast recursive Gaussian
filters.

2.2. Detection of Candidate Regions

Standard k-means clustering [8] is then performed on the nor-
malized image in order to partition all pixels into k classes.
The best results, allowing to separate the inner from the outer
part of the chromosomes is achieved by clustering the image
in k = 3 classes. In this situation, the class with the low-
est mean is identified as the background, the class with the
highest mean contains the pixels that represent the chromo-
somes, and the remaining class contains the pixels that belong
to a transition zone between the background and the chromo-
somes.

The k-means clustering provides a set of pixels that rep-
resents the foreground objects, but the algorithm does not
discriminate between different chromosomes within the fore-
ground cluster. To separate them, the 8-connected compo-
nents of the foreground cluster is labeled using a linear-time
algorithm [9]. Each connected component is a chromosome
candidate. However, due to the presence of photometric noise
and overlap between different chromosomes, it is necessary
to discard candidate regions that do not meet certain criteria.
To that end, the centroid of each region, its inertia matrix, and
its area are computed. Regions smaller than τa = 50 square-
pixel units are then discarded. After computing the minimal

1Segmentation tool: http://bigwww.epfl.ch/algorithms/chromosomeJ/
Analysis tool: http://bigwww.epfl.ch/algorithms/chromosomeK/

Fig. 2. The rectanguscule. The inner rectangle Rin, shown
in brighter gray, is of constant width w. The outer rectan-
gle Rout, shown in darker gray, has the same centroid and
orientation as the inner one and is obtained by extending the
boundaries of Rin by a distance β. These rectangles are en-
tirely determined by the pair of points {p,q} that belong to
the boundary of the inner one.

bounding rectangle along the direction given by the inertia
matrix of a candidate region, regions associated to bounding
rectangles that are longer than some user-specified value τl
are finally discarded.

2.3. Outlining with Custom Active Contours

Each chromosome is individually segmented using as initial-
ization the bounding rectangles from previous step. For this
task, we rely on active contours (a.k.a. snakes [10]). Snakes
are effective tools for image segmentation, which consist in a
curve that evolves from an initial position towards the bound-
ary of an object. The evolution of the curve is formulated as a
minimization problem. The associated cost function is called
the snake energy.

To guide the process, the chromosomes are first assumed
to have a conserved width. Second, we assume that the shape
of the chromosomes can be described by one rectangle or by a
composition of at most two rectangles. Finally, the pixels that
represent the chromosome are assumed to be brighter than the
background.

To efficiently segment bright objects, we use an approach
similar to [11] and adapt it to the specifics of the segmenta-
tion of quasi-rectangular chromosomes. We name our rect-
angular snake the rectanguscule (Figure 2). The rectangus-
cule is parameterized by two points p and q on the image
plane. The inner rectangle, Rin, is of constant user-specified
width w. The length and orientation are determined by the
control points. The area of the inner rectangle is given by
|Rin| = w ‖p − q‖. The outer rectangle, Rout, has the same
centroid and orientation as the inner one. It is constructed by
extending the boundaries of the inner rectangle by a constant
user-specified distance β. The area of the outer rectangle is
thus computed as |Rout| = (2β + ‖p− q‖) (2β + w).

The corners of the outer rectangle are determined by the
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control points according to the relations
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)
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where u = (q− p) /‖q− p‖ is the unit vector that deter-
mines the orientation of the rectangle and v is a vector or-
thonormal to u. Likewise, the corners of the inner rectangle
are determined by the control points according to the relations

rin1 = q+
w

2
v, rin2 = q− w

2
v,

rin3 = p− w

2
v, rin4 = p+

w

2
v.

The rectanguscule is a surface snake whose energy is not
driven by the data under the curve, but by the data enclosed
by it. At each iteration of the optimization process, the geom-
etry of the rectanguscule is updated to increase the contrast
between the intensity of the data averaged over its rectangular
core Rin and the intensity of the data averaged over its rect-
angular shell Rout. For Rin ⊂ Rout and the input image data
f , the snake energy is defined as

E =

∫
Rout\Rin

f (x, y) dxdy − λ
∫
Rin

f (x, y) dxdy,

where the factor λ is set to

λ =

(
|Rout|
|Rin|

− 1

)
.

This value of λ enforces that the energy remains zero when f
takes a constant value irrespective of the size and orientation
of the snake. The position of the control points is tuned us-
ing a standard unconstrained optimization algorithm that min-
imizes the energy of the snake. The final configuration of the
control points provides an accurate description of the orien-
tation and size of each chromosome. The optimization of the
snake is carried out efficiently by a Powell-like line-search
method [12].

2.4. Extraction of the Chromosomes

Finally, we extract each chromosome within the region de-
termined by the rectangular snakes. In some situations, long
chromosomes may appear bended with respect to their cen-
tral section. In these cases, two different rectangular snakes
are used to capture each branch of the chromosome. In our
software, we allow the user to connect/disconnect rectangular
snakes in order to deal with bent chromosomes. The chro-
mosome extraction is performed using cubic-spline interpo-
lation at the resolution of the original image. We sort the
extracted chromosomes by the combined length of the rect-
angular snakes that determine them in order to construct the
karyotype image.

3. INTERACTIVE ANALYSIS OF THE
CHROMOSOMES

In the following, we describe the design of the analysis tool
for interactively extracting quantitative information on the
chromosomes.

3.1. Annotation of the Chromosomes

To initiate the annotation process, the user defines the two
extremities of a chromosome by mouse-clicking on their lo-
cation within the image. The two points serve as seeds to
automatically draw a curve going through the medial axis of
the chromosome. This is obtained by optimizing an open ac-
tive contour (or open snake). Our formulation differs from
classical snakes which are usually defined as closed curves.
The open snake is parametrized by M ≥ 2 control points.
The two user-defined extremities delimit the chromosome are
considered as fixed anchors. The additional M − 2 control
points are defined with or without constraints. We define the
parametric representation of the curve

r(t) =

(
x(t)
y(t)

)
=

M−1∑
k=0

ckφ(t− k)

with natural cubic spline as basis function φ(t), as it has
been demonstrated [13] that cubic splines are optimal for
representing smooth parametric curves of low-curvature. The
open snake energy is obtained by integrating the values of the
Euclidean-distance-transformed image (fEDM, [14]) under
the snake curve, i.e.,

E =

∫
C

fEDM ds =

∫ 1

0

fEDM(r(t)) |r′(t)|dt.

In order to optimize our open snake, we rely on a multires-
olution strategy inspired from [13]. The open snake is first
initialized with three control points: the two user-defined ex-
tremities, and a point at mid-distance in the segment that joins
them. The endpoints are considered as ground truth to define
chromosome extremities and are not modified during the opti-
mization process. The unconstrained optimization algorithm
described in Section 2.3 is used to modify the free control
point position and minimize the energy of the snake. At con-
vergence, the optimal curve is used to spawn a snake offspring
composed of five control points, the additional points being
set halfway between each pair of parent control points. The
three parent points are fixed, leaving only two to be modified.
This two-steps approach grants enough flexibility to detect S-
shaped chromosomes without loosing precision on U-shaped
ones (Figure 3). It ensures that the three first control points are
well positioned to match U-shaped objects, and then refines
the curve to match objects with more complex geometry. In
this way, all chromosome shapes can accurately be segmented
in minimal computation time.
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Fig. 3. Variation of the number of control points. U-shaped
chromosomes are best annotated using a three control points
snake (top left). Five free control points results in irregular
curves (top right). On S-shaped chromosomes, a three control
points snake doesn’t offer enough flexibility to precisely cap-
ture chromosome shape (bottom left). When only five con-
trol points are used, a more precise trace is obtained (bottom
right).

Once the medial axis of a chromosome is detected, the
user can define the centromere position by clicking on the
trace. A numerical label is assigned to each chromosome
based on its length (1 being the longest), with automatic
renumbering during image annotation. The curve, cen-
tromere, and extremities of any chromosome can be edited
at all time. We emphasize that the centromere is only an
optional annotation on the curve and is not related in any way
to the position of the control points.

3.2. Chromosome Measurements

Chromosome annotations are saved in an XML file that can be
reloaded in the software for further edits. The annotated im-
age as well as a comma-separated value file containing helpful
measurements such as total chromosome length, centromere
position, and relative length of each chromosome arms (if the
centromere was defined) are extracted as well. It is worth not-
ing that chromosome traces are recorded in the XML file as a
collection of point coordinates. These data can hence handily
be used to extract additional shape-based measurements from
each object.

4. CONCLUSIONS

Our contribution in this paper are two user-friendly, free, and
open-source methods for image-based karyotyping and anal-
ysis of chromosomes (Figure 4). The analysis tool can be
used independently or as a companion plug-in for the seg-
mentation/karyotyping tool. Although built on rather simple
image processing algorithms, our softwares speed up process-
ing time, systematize data extraction, and have already been
shown to be useful for biologists. In particular, we point out
that while both tools were initially developed for chromosome

Fig. 4. Example of data analysis. Raw image (left), result-
ing karyotype (top right), and extracted chromosome lengths
(bottom right).

analysis, they can be used as well for the analysis of other rod-
shaped objects, including bacteria, worms, etc.
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