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Abstract
We show that a multi-dimensional scaling function of order γ  (possibly fractional) can always be represented as
the convolution of a polyharmonic B-spline of order γ  and a distribution with a bounded Fourier transform which
has neither order nor smoothness. The presence of the B-spline convolution factor explains all key wavelet
properties: order of approximation, reproduction of polynomials, vanishing moments, multi-scale differentiation
property, and smoothness of the basis functions. The B-spline factorization also gives new insights on the stability
of wavelet bases with respect to differentiation. Specifically, we show that there is a direct correspondence between
the process of moving a B-spline factor from one side to another in a pair of biorthogonal scaling functions and the
exchange of fractional integrals/derivatives on their wavelet counterparts.  This result yields two “eigen-relations”
for fractional differential operators that map biorthogonal wavelet bases into other stable wavelet bases. This
formulation provides a better understanding as to why the Sobolev/Besov norm of a signal can be measured from
the 

  
l p -norm of its rescaled wavelet coefficients. Indeed, the key condition for a wavelet basis to be an

unconditional basis of the Besov space B L Rq
s

p
d( ( ))  is that the s-order derivative of the wavelet be in Lp .
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1. INTRODUCTION

Recently, we proposed a new formulation of one-dimensional wavelet theory that starts from the
representation of a scaling function as the convolution of a B-spline with a tempered distribution that carries no
order at all13. This point of view provides some new insights and facilitates the derivation of the main results of
wavelet theory. Central to this formulation is the study of the properties of the (fractional) B-splines, which is
easier than for other wavelets because of the availability of explicit formulas in time and frequency12. The key
properties of the B-spline are then mapped almost mechanically to the scaling function through the convolution
relation.

Our goal in this paper is to extend this factorization idea to multiple dimensions and to propose a general
formulation that applies to all scaling functions and wavelets in L Rd

2( ) . Our motivation is threefold:
First, we are interested in identifying the multi-dimensional analogs of the B-splines. The choice that we

consider here are the polyharmonic B-splines10, which are non-separable and can be extended to fractional orders.
Note that these polyharmonic splines are localized versions of the Green functions of the iterated-Laplacian
operators6, 7.

Second, we want to get a more direct understanding of the interaction of wavelets with differential
operators. To quote Meyer9: “everything takes place as if the wavelets ψ( / )x a  were eigenvectors of the differential
operator ∂ s, with corresponding eigenvalue a s− ”. Thus, our goal is to write down explicitly these “eigen-relations”,
which, to the best of our knowledge, has not been done before. Again, this is made possible by working with
polyharmonic splines which can be differentiated analytically.



Third, we want to relax the classical decay conditions which are too restrictive for our purpose. In
particular, they exclude fractional wavelets12, which are precisely the type of wavelets we end up with after
fractional differentiation. Meyer9, for instance, uses the r-regularity constraint that requires the scaling function and
all its derivatives up to order r to decay faster than x

m−  for any integer m. In this work, we extend the theory to
slowly decreasing functions, one motivating factor being that the standard r-regularity condition would disqualify
the polyharmonic B-splines which are the basis of our formulation.

2. MATHEMATICAL PRELIMINARIES

2.1 Scaling functions and wavelets
We say that a multi-dimensional scaling function ϕ( ) ( )x L Rd∈ 2  is admissible if it satisfies the three following
properties: (i) it generates a Riesz basis, (ii) it satisfies the two-scale relation
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The wavelet filters are typically obtained by designing a multi-dimensional perfect-reconstruction filterbank14;
˜ ( )H e jω  and H e j( )ω  are the analysis and synthesis filters in the lowpass branch, while ˜ ( )G em

jω  and G em
j( )ω , with

  m
d= −1 2 1, ,L , are their wavelet counterparts. The corresponding projector operator at scale a i= 2  is specified as
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The wavelet transform will be of order γ —possibly, fractional—if and only if the scale truncated approximation
error for smooth functions decays like the γ th power of the scale; in other words, iff. ∀ ∈f W2

γ ,
f P f O ai L

− =˜ ( )
2

γ ,with a i= 2 , where W2
γ  denotes the Sobolev space of order γ .

2.2 Polyharmonic B-splines
Rabut’s polyharmonic B-splines of order γ  provide an interesting family of scaling functions, the order of which
may be fractional10. These functions, denoted by βγ ( )x , are best defined in the Fourier domain as
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where   sin( / ) sin( / ), ,sin( / )ω ω ω2 2 21= ( )L d . Despite the fact that the polyharmonic B-splines violate the rapid-
decay requirements of classical wavelet theory (they typically only decay like O x

d
( )

− −2 , they generate Riesz bases
and are perfectly valid scaling functions for γ > d /2 (also see Madych’s  chapter5). In addition, βγ ( ) ( )x L Rp

d∈  for
γ > −d p( / )1 1 . Another important property is the convolution relation β β βγ γ γ γ1 2 1 2

∗ = + , which follows directly from
the definition. In one dimension, these functions are equivalent to the symmetric fractional B-splines of degree
α γ= −1 whose properties are investigated elsewhere12.



2.3 Differential operators
In multiple dimensions, it is customary to consider an isotropic fractional differential operator ∂∗

s of order s that
corresponds to the (s/2)-iterate of the Laplacian operator:
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This fractional derivative is to be understood in the sense of distributions. The discrete counterpart of this operator
is the finite-difference operator ∆∗
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that corresponds to the (s/2)-iterate of the discrete Laplacian. Using these two operators, we can rewrite the
polyharmonic B-spline as β ∂ δγ

γ γ( ) ( )*x x= ∗
−∆ , where ∂ γ

∗
−  (fractional integral of order γ ) is the convolution inverse

of ∂γ
*  (fractional derivative of order γ ). Next, we use the composition rules ∆ ∆ ∆* * *

γ γ= −s s  and ∂ ∂ ∂γ γ
∗ ∗

−
∗
− −=s s( )  to

compute the fractional derivative of a polyharmonic B-spline:
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This yields an explicit differentiation formula that will play a central role in our formulation.

 3. ORDER AND RELATED PROPERTIES
In conventional wavelet theory, the order is constrained to be an integer because of rather stringent decay

requirements3, 9. We believe that these restrictions are unnecessary and that it is interesting to extend the classical
constructions to fractional orders. This also requires a restatement of the classical Strang-Fix11 conditions. If one
assume that ϕ( )x  satisfies the Riesz basis condition—but not necessarily the two-scale relation—and has sufficient
algebraic decay, then the approximation results of de Boor, DeVore and Ron4 imply that ϕ( )x  will be of order γ
(possibly fractional) if and only if (see also the work of Blu and Unser1 for the equivalence in the 1d case)
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We will now show that this order condition has profound implications on the properties of the corresponding
wavelets. We will also see that the order will manifest itself by the presence of a polyharmonic B-spline
convolution factor, which will help us get a better understanding of the whole issue of wavelet differentiation.

3.1 Wavelet manifestations of the order property
By using (8) together with the fact that the analysis wavelets ψ̃m  are perpendicular to ϕ( )x k− , k Z d∈ , we can
prove that the wavelets have the following frequency behavior near the origin:

˜̂ ( ) ( )ψ ω ω γ
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In other words, they essentially behave like γ th order differentiators. If we also assume that the ψ̃m ’s have
sufficient (inverse polynomial) decay for their moments to be well-defined mathematically, the above result
implies that the wavelets have the vanishing moment property

  
x x x dxn n

m
d1 0L ˜ ( )  ψ =∫   for all multi-integers    1n nd+ + <L γ (10)



which is a well-known  result when the order is an integer9. Because of (9) and ˜̂ ( )ϕ 0 1= , we also have that
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because 0 2 2 10< ≤ ≤ ∀ ∈ −π πc dsin( / ) / ,  [ , ]ω ω ω . Thus, the wavelet filters must necessarily have a zero of order
γ  at the origin.

3.2 Order, zeros, and B-spline factorization
In a paper in preparation2, we have established the following fractional extension of a standard result in wavelet
theory:
Theorem 1. Let ϕ  be a valid scaling function. Then, ϕ  is of order γ  if H e Oj em( ) ,( )ω γω+π = ( )2 2    m d= −1 2 1, ,L ,
with   e b b bm d= ( , , , )1 2 L , where   b b bm1 2L  are the digits of the binary code of m .

This theorem sets the requirement for a γ th order wavelet transform: the refinement filter H e j( )ω  must be designed
to have zeros of order γ  at the critical frequencies πem .
If we now add a slight regularity requirement on H e j( )ω , we can derive a multidimensional extension of our
previous B-spline factorization theorem13.

Theorem 2. Let ϕ  be a valid scaling function with H e C hj h( ) ˙ ,  ω ∈ > 0 . Then, ϕ  is of order γ  iff.
ϕ β ϕγ γ( ) ( ) ( )x x x= ∗ 0 with ϕ0 ∈ ′S , ˆ ( )ϕ0 0 1=  and ˆ ( )ϕ ω0 < +∞.
The interpretation of this result is that every scaling function contains a polyharmonic B-spline convolution factor
(the regular part of it) which is entirely responsible for the order, and by implication, for all wavelet properties
listed in Section 3.1. The factor ϕ0 (irregular part) is a singular distribution; it has no order and no smoothness at
all.  Its only remarkable property is that its Fourier transform is bounded on all compact subsets.

3.3 Spline factors and regularity
The B-spline factor is also fully responsible for the smoothness of the basis functions. To see why this is the case,
we note we can explicitly differentiate ϕ β ϕγ γ= ∗ 0  because ∂∗

s is associative (it is a convolution operator) and
because we know from (7) how to differentiate βγ . Specifically, we get
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This explicit calculation leads to the following smoothness characterization theorem.

Theorem 3: If ϕ β ϕγ γ( ) ( )x xr r= ∗ −  with ϕγ − ∈r p
dL R( )  then ∂ ϕγ∗ ∈r

p
dL R( ) ; i.e., ϕ  is r times differentiable in the

Lp -sense.
Proof: The argument uses Minkowsky’s inequality and the fact that the coefficients a kr ( ) of the finite-difference
operator ∆∗

r  are in   l1 for r > 0:
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More significant is the fact that we have a converse version of the theorem for the Sobolev case p = 2.
Theorem 4: If ϕ  is a valid scaling function such that ∂ ϕ* ( )r dL R∈ 2 , then ϕ β ϕ( ) ( )x xr= ∗ 0  with ϕ0 2∈ L Rd( ) .



The proof of this result is technical and can be found elsewhere2. The important consequence of this result is that
there cannot be any wavelet smoothness without a B-spline factor. Moreover, the theorem implies that the
distribution ϕ0 in Theorem 2 has no Sobolev smoothness at all; otherwise, it would be possible to pull out some
more B-spline, indicating that that the order would be larger than γ .

 4. WAVELETS AND DIFFERENTIATION

4.1 Biorthogonality relations
Based on the convolution property of the B-splines, we may express the scaling function ϕγ  as ϕ β ϕγ γ= ∗ −s s  with
ϕ β ϕγ γ− −= ∗s s 0 . We also assume that ˜ ˜ϕγ , the dual of ϕγ , is of order γ̃  so that it can be written as ˜ ˜˜ ˜ϕ β ϕγ γ= ∗ 0. This
allows us to manipulate the biorthogonality relation,
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which leads to the identification of a biorthogonal pair of “order-reallocated” scaling functions ˜ ˜˜ ˜ϕ β ϕγ γ+ += ∗s s 0 and
ϕ β ϕγ γ− −= ∗s s 0 . Note that the manipulation is valid and yields Lp -stable Riesz bases as long as ϕγ − ∈s pL , which
also implies that ∂ ϕγ∗ ∈s

pL  (cf. Theorem 3). In a complementary fashion, we can also manipulate the wavelet
biorthogonality relations
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where the symmetric fractional integration operator ∂ ω∗
− −↔s s is the convolution inverse of ∂ ω∗ ↔s s. Here too,

we are allowed to differentiate ψm : we do obtain meaningful basis functions as long as ϕγ  has s derivatives in the
Lp -sense. Taking the fractional integral of ψ̃m  for s ≤ γ  is also legitimate in the sense that ∂ ψ∗

− ∈s
m pL˜  because of

the special behavior of its Fourier transform near the origin (see (9)). We will now show that this all nicely fits
together and that the “differential” wavelets 
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L Rd
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4.2 “Differential” and “integral” wavelets
By applying the differentiation formula (12) to (2), we obtain the explicit form of the “derivative” wavelets
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This proves that ψm
s x( )( ) is indeed a wavelet with corresponding scaling function ϕ β ϕγ γ− −= ∗s s 0 . Likewise, we use

(11) and express the “integral” wavelet as
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which also yields a valid (biorthogonal) wavelet with corresponding scaling function ˜ ˜ϕ β ϕγ γ+ += ∗s s 0 . Finally, we
use the scaling relation ∂ ψ ψ∗

−{ } =s s sx a a x a( / ) ( / )( )  and close the loop by deriving the “eigen-relation” for wavelet
derivatives to which Meyer was alluding to:
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which the short hand notation ψ ψm i k
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m
ix x k, ,

/( ) /= −( )2 22 . Of course, the qualifying statement is not rigorously
correct—the important point is that there are basis functions with the same wavelet structure on both sides of the
identity. The practical relevance of these “differential” wavelets is that they give us a direct way of gauging the
fractional derivative of a signal based on its wavelet coefficients in the original basis. Specifically, we can
differentiate the wavelet expansion of a signal by dividing its wavelet coefficients by 2is , which yields a



representation in the modified wavelet basis ψm i k
s
, ,

( ){ }. Since ψm i k
s
, ,

( ){ } is also an unconditional wavelet basis of
L Rd

2( ) , it follows that the l2-norm of the rescaled wavelet coefficients will be equivalent to the Sobolev norm of
the signal. The Besov case is analogous with lp -norms being used instead; the argument there is more involved and
relies on some Riesz-type Lp -norm equivalences 9. Also note that the wavelets that have just been specified are
fractional ones, which, in itself, may serve as an a posteriori justification for our extended formulation.
5.  CONCLUSION

The main contribution of this paper has been to show that a valid multi-dimensional scaling function can
always be expressed as the convolution product of a polyharmonic B-spline (the regular part of it) and a
distribution with bounded Fourier transform. The B-spline factor carries all the order of approximation. As such, it
is entirely responsible for the key mathematical features of the transform: reproduction of polynomials, vanishing
moments,  multi-differentiation, and smoothness of the basis functions.

An advantage of this new formulation is that it makes the issue of wavelet differentiation much more
transparent. By analogy with the Fourier transform for which (isotropic) fractional differentiation corresponds to a
multiplication by ω s , this operation corresponds to a division of the wavelet coefficients by as, which is
consistent with the observation that the scale is inversely proportional to the frequency. The fact that we have
obtained explicit wavelet differentiation formulas is also interesting from a practical point of view, because this
yields an exact algorithm for reconstructing the fractional derivative of a signal from its wavelet expansion, or,
equivalently, for computing the wavelet transform of the derivative of a signal.
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