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Biomedical imaging group

  Inter-disciplinary research strategy
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Back to the fundamentals:  interpolation

 Fundamental issue in imaging and
signal processing
Linking the discrete and the continuous

Acquisition

Algorithm design

 Mismatch between classical theory and practice
 Classical theory : Shannon’s sampling theorem
 Practice: nearest neighbor, linear interpolation

 Limitations of Shannon’s sampling theory
 Ideal lowpass filters do not exist
 Incompatible with finite support signals
 Gibbs oscillations
 Slow decay of sinc(x)

 Basic problem
How do you interpolate a signal ?
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Interpolation and bio-imaging
Image processing task Specific operation Imaging modality

Tomographic
reconstruction

• Filtered backprojection
• Fourier reconstruction
• Iterative techniques
• 3D + time

Commercial CT (X-rays)
EM
PET, SPECT
Dynamic CT, SPECT, PET

Sampling grid
conversion

• Polar-to-cartesian coordinates
• Spiral sampling
• k-space sampling
• Scan conversion

Ultrasound (endovascular)
Spiral CT, MRI
MRI

2D operations
• Zooming, panning, rotation
• Re-sizing, scaling

All

• Stereo imaging
• Range, topography

Fundus camera
OCT

3D operations
• Re-slicing
• Max. intensity projection
• Simulated X-ray projection

CT, MRI, MRA

Visualization

Surface/volume rendering
• Iso-surface ray tracing
• Gradient-based shading
• Stereogram

CT
MRI

Geometrical correction • Wide-angle lenses
• Projective mapping
• Aspect ratio, tilt
• Magnetic field distortions

Endoscopy
C-Arm fluoroscopy
Dental X-rays
MRI

Registration • Motion compensation
• Image subtraction
• Mosaicking
• Correlation-averaging
• Patient positioning
• Retrospective comparisons
• Multi-modality imaging
• Stereotactic normalization
• Brain warping

fMRI, fundus camera
DSA
Endoscopy, fundus camera,
EM microscopy
Surgery, radiotherapy

CT/PET/MRI

• Contours
• Ridges
• Differential geometry

AllFeature detection

Contour extraction
• Snakes and active contours MRI, Microscopy (cytology)
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Splines: a unifying framework

Linking the discrete and the continuous …..

Splines

      WaveletsMultiresolution        
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Splines: Bad press phenomenon

 Classical review article on interpolation, IEEE TMI, 1983
Comparison of four interpolators:
“The cubic B-spline provides the most smoothing.”

 Classical book on Digital Image Processing, 1991 (2nd ed)
About high order B-splines:
“[out-of-band] interpolation error reduces significantly for higher order
interpolation functions, but at the expense of resolution error [i.e.,
distortion]”

 Recent book on Volume Rendering, 1998
“The results of scaling the original image using [cubic] B-spline
interpolation are shown in Figure 5.20. You can see the blurring
effects …..”
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SPLINE INTERPOLATION

 Splines: definition

 B-spline basis functions

 B-spline interpolation

 Spline interpolators

 Geometric transformation of images
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Splines: definition

Definition: A polynomial spline of degree n , s(x)  , with knots …< xk < xk+1 <… is
a function with the following two properties:

 Piecewise polynomial:
s(x)  is a polynomial of degree n  in each interval xk, xk+1[ ) ;

 Higher-order continuity:
s(x),s(1)(x),…,s(n −1)(x)  are continuous at the knots xk .

 Effective degrees of freedom per segment:
          n+1                             −          n           =      1 
   (polynomial coefficients)   (constraints)

 Cardinal splines = unit spacing and infinite number of knots

               The right framework for signal processing
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B-spline basis functions

 B-spline of degree n

  

Basis functionsCubic spline (n=3)

€ 

s(x) = c(k)β n (x − k)
k∈Z
∑

Any cardinal spline can be represented as a linear combination
of shifted B-splines:

 Theorem (Schoenberg, 1946) 

∗ ∗…
  

€ 

β n (x) = β 0 ∗ β 0 ∗L∗ β 0

(n +1)  times
1 2 4 4 3 4 4 (x), β 0(x) =

1 − 1
2 ≤ x < 1

2

0, otherwise
 
 
 
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B-spline interpolation

 Discrete B-spline kernels

€ 

b1
n(k):= β n (x)

x=k
    z← →      B1

n(z) = β n (k)z −k
k= − n/ 2 

n /2 

∑

 B-spline interpolation: filtering solution

€ 

f (x) x= k = c(l)β n(x − l)
x= k

l∈Z
∑ = b1

n ∗c( )(k)

€ 

⇒    c(k) = (b1
n )−1 ∗ f( )(k)

 

 Efficient recursive solution

€ 

(b1
3 )−1(k)   z← →      6

z + 4 + z −1 =
−6α

(1− αz)(1− αz −1)

€ 

1
1 +αz−1

€ 

1
1 +αz

Cascade of first order recursive filters

causal anti-causal

(symmetric exponential)

4/6

1/61/6
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Generic C-code  (splines of any degree n)

void    ConvertToInterpolationCoefficients (
            double c[ ],   long DataLength,    double  z[ ],   long NbPoles,   double  Tolerance)
 {double Lambda = 1.0; long n, k;
    if (DataLength == 1L) return;
    for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
    for (n = 0L; n < DataLength; n++) c[n] *= Lambda;
    for (k = 0L; k < NbPoles; k++) {
        c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
        for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
        c[DataLength - 1L] = (z[k] / (z[k] * z[k] - 1.0))
        * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
        for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }
}

double  InitialCausalCoefficient (
            double  c[ ],  long    DataLength,  double  z,  double  Tolerance) 
{  double Sum, zn, z2n, iz; long n, Horizon;
    Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
    if (DataLength < Horizon) Horizon = DataLength;
    zn = z; Sum = c[0];
    for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}
    return(Sum);
}

 Main recursion

 Initialization
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Spline interpolation

€ 

ϕint
n (x) = (b1

n )−1
k∈Z
∑ (k)β n (x − k)

 Equivalent forms of spline representation

 Cardinal (or fundamental) spline

= s(k)ϕ int
n (x − k)

k∈Z
∑

Finite cost implementation of an infinite impulse response
interpolator !

€ 

s(x) = c(k)β n (x − k) =
k∈Z
∑ s(k)∗ (b1

n )−1(k)( )β n (x − k)
k∈Z
∑
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Limiting behavior

 Spline interpolator

€ 

ϕint
n (x)   Fourier← →      H n (ω) =

sin(ω / 2)
ω / 2

 
 

 
 

n +1 1
B1
n (e jω )

Impulse response Frequency response

 Asymptotic property

€ 

lim
n→∞

ϕ int
n (ω) = sinc(x),       lim

n→∞
Hn (ω) = rect(ω / 2π)

The cardinal spline interpolators converge to the sinc-interpolator
(ideal filter) as n→ +∞:

(in all Lp-norms )

Includes Shannon’s theory as a particular case !

  

+∞

1

2

15

Geometric transformation of images

 2D separable model

2D re-sampling2D filtering
(separable)

f (k,l) c(k,l)

f (x, y) = c(k, l)βn(x − k)
l=l1

(l1 +K −1)

∑
k=k1

(k1 +K−1)

∑ βn (y − l)

 Applications

zooming, rotation, re-sizing, re-formatting, warping

x, y( )
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Cubic spline coefficients in 2D

Pixel values B-spline coefficientsf (k,l) c(k,l)

Digital filter
(recursive, 

   separable)
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Truncated sinc Cubic splineTruncated sinc Cubic spline

Bilinear Windowed-sinc Cubic spline
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SPLINES AND APPROXIMATION THEORY

 Order of approximation

 Quantitative L2 approximation
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Order of approximation

 General “shift-invariant” space at scale a

 Projection operator

∀f ∈L2,     Pa f = arg min
sa ∈Va

f − sa L2
    ∈Va

A scaling/generating function ϕ  has order of approximation 

€ 

L  iff

€ 

∀f ∈W2
L ,    f − Pa f L2

≤C ⋅ aL ⋅ f (L )
L2

 Order of approximation

DEFINITION

1 2 3 4 5

2 4

a = 1

a = 2

B-splines of degree n have order of approximation L=n+1

  

€ 

Va (ϕ) = sa (x) = c(k)ϕ x
a
− k

 

 
 

 

 
 :   c ∈ l 2

k∈Z
∑

 
 
 

 
 
 
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Spline reconstruction of a CAT-scan

Piecewise constant

Cubic spline

€ 

L =1

€ 

L = 4
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High-quality image interpolation

 B-splines & O-MOMS: best cost-performance tradeoff

Web demo

Thévenaz et al., Handbook of Medical Image Processing, 2000
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1.41.21.00.80.60.40.20.0
Execution time (s rot-1)

Bspline(2)

Bspline(4)

Bspline(5)

Bspline(3)

Bspline(6)

German [1997]

Meijering(5) [1999]
Schaum(3) [1993]

Dodgson [1997]

Nearest-neighbor

Schaum(2) [1993] Meijering(7) [1999]

Sinc Hamming(4)

Keys [1981]

Linear
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APPLICATION EXAMPLE

 Image Registration
 Rigid body

 Elastic
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Splines: multi-modal image registration

Specificities of the approach

 Criterion: mutual-information
(Colignon et al., 1996)

 Cubic spline model
 high quality
 sub-pixel accuracy

 Multiresolution strategy

 Marquardt-Levenberg like
optimizer
 Speed
 Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000 
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 Problem formulation

Splines: registration by elastic deformation

aaaaa

reference image test image

min
T∈Va

f1(x) − f2 (T (x))

 Principles of the method
 Splines

 continuous image
representation

 deformation model with
adjustable size

 Multiresolution; coarse-to-fine
 image pyramids
 deformation model

  Non-linear optimization

 Optimization criterion:

Kybic et al., IEEE Trans. Medical Imaging, 2000
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INTERPOLATION OF NOISY DATA

 Tikhonov regularization

 Smoothing splines

 MMSE (or Wiener) solution
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Fitting noisy data: Tikhonov regularization

 Input data 

€ 

f [k]{ }k∈Z  corrupted by noise

 Model : continuous-time function 

€ 

s(t)

 Data term : 

€ 

ξdata = f [k]− s(k)
k∈Z
∑

2

 Spline energy : 

€ 

ξL = DLs
L2

2     (measures lack of smoothness)

 Context

 Possible formulations

€ 

min
s( t )∈W2

L
 ξdata + λ ⋅ξL

Lagrange multiplier

  

€ 

c

(Tikhonov regularization)€ 

min
s( t )∈W2

L
 ξL    subject to   ξdata = C1

A priori knowledge
of noise variance

€ 

min
s( t )∈W2

L
 ξdata    subject to   ξL ≤ C2OR

A priori knowledge
of signal class
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Smoothing splines

Theorem [Schoenberg, 1964]
For a given sequence   

€ 

f [k]∈ l 2  and regularization parameter 

€ 

λ ≥ 0, the minimizer of

€ 

sλ(t) = arg min
s∈W2

L
f [k]− s(k)( )2

+ λ ⋅ DLs
L2

2

k∈Z
∑
 
 
 

 
 
 

is unique and is a cardinal polynomial spline of degree 

€ 

n = 2L −1.

 Example : L=2
 Spline energy :                                           (bending energy)

 Optimal solution: cubic spline (n=2×2-1=3)

 Extreme cases:
ν λ→+∞ : best fitting line (linear regression)

ν λ→0    : cubic spline interpolant (minimum curvature solution)

€ 

D2s
L2

2
= ˙ ̇ s (t) 2

−∞

+∞

∫ dt
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Cubic smoothing spline: example

Noise-free curve

Smoothing spline (optimal regularization)

€ 

f (k) = f0(k) + n[k]
Noisy data points:

€ 

f0(t)

Interpolating spline (λ=0)

Regression line (λ→+∞)
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Smoothing splines: implementation

 Digital filter-based implementation

€ 

f [k]

€ 

cλ[k]

€ 

Hλ(z) =
1

β n (k)z−k
k∈Z
∑ + λ ⋅ (−z + 2 − z−1)L

Input signal
(discrete)

Digital filter
(recursive)

B-spline coefficients
(discrete)

Smoothing spline fit:

€ 

sλ(t) = cλ[k]
k∈Z
∑ β n (t − k)

 Smoothing spline filter

€ 

Hλ(z)

€ 

λ = 0

€ 

λ =1

€ 

10

€ 

100

Frequency responses of smoothing cubic spline filters

(interpolator)
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Generalization: L*L smoothing splines

Theorem [U.-Blu, 2004]
For a given sequence   

€ 

f [k]∈ l 2  and regularization parameter 

€ 

λ ≥ 0, the minimizer of

€ 

sλ(t) = arg min
s∈W2

L
f [k]− s(k)( )2

+ λ ⋅ Ls L2

2

k∈Z
∑
 
 
 

 
 
 

is the unique cardinal 

€ 

L∗L -spline : 

€ 

sλ(t) = hλ ∗ f( )[k] ϕ(t − k)
k∈Z∑ ,

where 

€ 

ϕ(t) is a corresponding exponential B-spline of order 

€ 

2L  and
where 

€ 

hλ is a suitable smoothing spline filter.

  

€ 

L =DL + a1D
L−1 +L+ aLI  : differential operator of order 

€ 

L

 Exponential B-spline

€ 

ˆ L (ω) = ( jω −α i)
k=1

L

∏

€ 

ˆ ϕ (ω) =

1− eα i − jω
2

k=1

L

∏

jω −α i
2

k=1

L

∏

  

€ 

F← →  

€ 

ϕ(t)

€ 

L =1

  

€ 

F -1
← →   
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Stochastic signal models

 Wide sense stationary processes

Realization of the stochastic process: 

Zero mean:

€ 

x(t)

€ 

E x(t){ } = 0
Autocorrelation function :

€ 

E x(t)x(t + τ){ } = cxx (τ )∈ L2

Spectral density function :   

€ 

Cxx (ω) = F{cxx (τ)}∈ L2

 Stochastic differential equation

€ 

L{x(t)} = w(t)

€ 

L−1

€ 

x(t)

€ 

Cxx (ω) =
σ 0

2

ˆ L (ω)
2

€ 

L

€ 

w(t)

€ 

Cww(ω) =σ 0
2

€ 

w(t)

Spectral shaping Whitening filter

(driven by white Gaussian noise)

€ 

cww(τ) =σ 0
2 ⋅ δ(τ )

32

MMSE (or Wiener) solution

 Statistical hypotheses

Discrete measurements (signal + noise) : 

€ 

y[k] = x(k) + n[k]

Signal autocorrelation: 

€ 

cxx (τ )   such that  L∗L cxx (τ){ } =σ 0
2 ⋅ δ(τ)

Discrete white noise with variance

€ 

σ 2   ⇒   cnn k[ ] =σ 2 ⋅ δ k[ ]

Theorem  [U.-Blu, 2004]

Under the above assumptions, the linear Minimum Mean Square Error estimator of

€ 

x(t)  at time 

€ 

t = t0 given the measurements 

€ 

y[k]{ }k∈Z  is 

€ 

sλ(t0)  with 

€ 

λ =σ 2 /σ 0
2 , where

€ 

sλ(t)  is 

€ 

L∗L  cardinal smoothing spline fit of 

€ 

y[k]{ }k∈Z , as specified previously.

 MMSE continuous-time signal estimation

Remark: optimal over all estimators if one adds the assumption of Gaussianity 
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On the optimality of splines

 Splines and continuous-time Tikhonov regularization
 Spline interpolators are optimal: they have minimun « spline

energy » (e.g., curvature) among all possible interpolants

 Smoothing splines are optimal: they provide the best regularized fit
of the input data, among all possible functions

 Splines are optimal statistical estimators
 Smoothing spline = MMSE estimator for fractal-like (1/ωL) processes

 Optimal regularization factor:   λ ∝ σ2

 Can yield optimal estimators of derivatives, etc.

 Estimator can be fine tuned to the spectral characteristics of input
signal   generalized splines

(work in progress)
34

1. Selection of the “optimal“ spline space (e.g., cubic splines)

Bottom line for practical applications

3. Interpolation step (remains the same in all cases)

€ 

s(x) = c[k]ϕ(x − k)
k∈Z
∑

2. B-spline coefficients determination via an appropriate filtering
algorithm (interpolation or smoothing spline)

Digital algorithm

€ 

f [k]

€ 

c[k]

€ 

λopt =
σ 2

σ 0
2

35

CONCLUSION

 Distinctive features of splines
 Simple to manipulate
 Smooth and well-behaved
 Excellent approximation properties
 Multiresolution properties  (Wavelets !)
 Optimality properties (variational, statistical, …)

 Splines and medical imaging
 A story of avoidance and, more recently, love….
 Best cost/performance tradeoff
 Many applications …..

 Unifying signal processing formulation
 Tools: digital filters, convolution operators
 Efficient recursive filtering solution
 Exact calculus (differential operators, etc.)
 Flexibility: piecewise constant to bandlimited 36

Splines: the end of the tunnel

 Recent survey article on interpolation, IEEE TMI, 2000
Comparison of 31 interpolation algorithms:
“It [the cubic B-spline interpolator] produces one of the best results in
terms of similarity to the original images, and of the top methods, it
runs fastest.”

 Addendum on spline interpolation, IEEE TMI, 2001
 “Therefore, high degree B-splines are preferable interpolators for
numerous applications in medical imaging, particularly if high
precision is required.”

 Recent evaluation of interpolation, Med. Image Anal., 2001
Comparison of 126  interpolation algorithms:
“ The results show that spline interpolation is to be preferred over all
other methods, both for its accuracy and its relatively low cost. ”

 High-quality spline interpolation algorithms were included in the 2003
release of SPM (version 2b), a freely-available software package that
is used worldwide for the statistical analysis of fMRI data.
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