

Medical image interpolation: The quest for higher quality

Michael Unser Biomedical Imaging Group EPFL, Lausanne Switzerland

3

Medical Imaging Conference, Rome, October 16-22, 2004

- Introduction
- Spline interpolation
- Splines and approximation theory
- Application example: image registration
- Interpolation in the presence of noise
- Conclusions

Splines: Bad press phenomenon

- Classical review article on interpolation, IEEE TMI, 1983 Comparison of four interpolators: "The cubic B-spline provides the most smoothing."
- Classical book on Digital Image Processing, 1991 (2nd ed) About high order B-splines: "[out-of-band] interpolation error reduces significantly for higher order interpolation functions, but at the expense of resolution error [i.e., distortion]"
- Recent book on Volume Rendering, 1998 "The results of scaling the original image using [cubic] B-spline interpolation are shown in Figure 5.20. You can see the blurring effects"

7

SPLINE INTERPOLATION

- Splines: definition
- B-spline basis functions
- B-spline interpolation
- Spline interpolators
- Geometric transformation of images

8

INTERPOLATION OF NOISY DATA

- Tikhonov regularization
- Smoothing splines
- MMSE (or Wiener) solution

25

MMSE (or Wiener) solution

Statistical hypotheses

Discrete measurements (signal + noise) : y[k] = x(k) + n[k]

Signal autocorrelation: $c_{_{XX}}(\tau)$ such that $L^*L\{c_{_{XX}}(\tau)\} = \sigma_0^2 \cdot \delta(\tau)$

Discrete white noise with variance $\sigma^2 \Rightarrow c_{nn}[k] = \sigma^2 \cdot \delta[k]$

MMSE continuous-time signal estimation

Theorem [U.-Blu, 2004]

Under the above assumptions, the linear Minimum Mean Square Error estimator of x(t) at time $t = t_0$ given the measurements $\{y(k)\}_{i \in \mathbb{Z}}$ is $s_k(t_0)$ with $\lambda = \sigma^2/\sigma_0^2$, where $s_k(t)$ is L'L cardinal smoothing spline fit of $\{y(k)\}_{i \in \mathbb{Z}}$, as specified previously.

Remark: optimal over all estimators if one adds the assumption of Gaussianity

On the optimality of splines

Splines and continuous-time Tikhonov regularization
 Spline interpolators are optimal: they have minimum « spline

- energy » (e.g., curvature) among all possible interpolants
- Smoothing splines are optimal: they provide the best regularized fit of the input data, among all possible functions
- Splines are optimal statistical estimators
 - Smoothing spline = MMSE estimator for fractal-like (1/ω²) processes
 - Optimal regularization factor: $\lambda \propto \sigma^2$
 - Can yield optimal estimators of derivatives, etc.
 - Estimator can be fine tuned to the spectral characteristics of input signal
 ⇒ generalized splines

(work in progress)

35

Bottom line for practical applications

3. Interpolation step (remains the same in all cases)

$s(x) = \sum_{k \in \mathbb{Z}} c[k]\varphi(x-k)$

34

32

CONCLUSION

- Distinctive features of splines
 - Simple to manipulate
 - Smooth and well-behaved
 - Excellent approximation properties
 - Multiresolution properties (Wavelets !)
 - Optimality properties (variational, statistical, ...)
- Splines and medical imaging
 - A story of avoidance and, more recently, love
 - Best cost/performance tradeoff
 Many applications
- Unifying signal processing formulation
 - Tools: digital filters, convolution operators
 - Efficient recursive filtering solutionExact calculus (differential operators, etc.)
 - Flexibility: piecewise constant to bandlimited

Splines: the end of the tunnel

- Recent survey article on interpolation, *IEEE TMI*, 2000 Comparison of 31 interpolation algorithms: "It [the cubic B-spline interpolator] produces one of the best results in terms of similarity to the original images, and of the top methods, it runs fastest."
- Addendum on spline interpolation, IEEE TMI, 2001 "Therefore, high degree B-splines are preferable interpolators for numerous applications in medical imaging, particularly if high precision is required."
- Recent evaluation of interpolation, Med. Image Anal., 2001 Comparison of 126 interpolation algorithms:
 "The results show that spline interpolation is to be preferred over all other methods, both for its accuracy and its relatively low cost."
- High-quality spline interpolation algorithms were included in the 2003 release of SPM (version 2b), a freely-available software package that is used worldwide for the statistical analysis of fMRI data.

Key references

- Spline basics
 M. Unser, "Splines: a perfect fit for signal processing," *IEEE Signal Processing Magazine*, vol. 16, no. 6, pp. 22-38, November 1999.
- Splines and approximation theory
 T. Blu, M. Unser, "Quantitative Fourier analysis of approximation techniques: Part I—Interpolators and projectors," *IEEE Trans. Signal Processing*, vol. 47, no. 10, pp. 2783-2795, October 1999.
- Comparison of interpolators P. Thévenaz, T. Blu, M. Unser, "Interpolation revisited," *IEEE Trans. Medical Imaging*, vol. 19, no. 7, pp. 739-758, July 2000. .
- Interpolation of noisy data
 M. Unser, T. Blu, "Generalized smoothing splines and the optimal discretization of the Wiener filter," *IEEE Trans. Signal Processing*, in press.

38

Preprints and software can be downloaded at: http://bigwww.epfl.ch