- (gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Medical image interpolation:
The quest for higher quality

Michael Unser

Biomedical Imaging Group
EPFL, Lausanne
Switzerland

Medical Imaging Conference, Rome, October 16-22, 2004

L (g

Biomedical imaging group

ECOLE POLYTECHNIQUE
L FEDERALE DE LAUSANNE
= Inter-disciplinary research strategy

Mathematical
imaging

Medical
imaging

Advanced
image processing
in biology

Splines Wavelets

Theoretical Tin
aspects |
A\

OUTLINE

= Introduction

= Spline interpolation

= Splines and approximation theory

= Application example: image registration
= Interpolation in the presence of noise

= Conclusions

Back to the fundamentals: interpolation

= F issueini ing and
signal processing

Acquisition

Linking the discrete and the continuous Algorithm design
= Mismatch between classical theory and practice

Classical theory : Shannon’s sampling theorem

Practice: nearest neighbor, linear interpolation

= Limitations of Shannon’s sampling theory
Ideal lowpass filters do not exist
Incompatible with finite support signals
Gibbs oscillations
Slow decay of sinc(x)

= Basic problem
How do you interpolate a signal ?
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Splines: a unifying framework

Linking the discrete and the continuous .....




Splines: Bad press phenomenon

= Classical review article on interpolation, IEEE TMI, 1983
Comparison of four interpolators:
“The cubic B-spline provides the most smoothing.”

= Classical book on Digital Image Processing, 1991 (2" ed)
About high order B-splines:
“[out-of-band] interpolation error reduces significantly for higher order
interpolation functions, but at the expense of resolution error [i.e.,
distortion]”

= Recent book on Volume Rendering, 1998
“The results of scaling the original image using [cubic] B-spline
interpolation are shown in Figure 5.20. You can see the blurring
effects .....”

SPLINE INTERPOLATION

= Splines: definition

= B-spline basis functions
= B-spline interpolation

= Spline interpolators

= Geometric transformation of images

Splines: definition

Definition: A polynomial spline of degree n, s(x) , with knots ... < x, < x,,, <... is
a function with the following two properties:
= Piecewise polynomial:
s(x) is a polynomial of degree # in each interval [x,.x,,,);
= Higher-order continuity:
5(x),5"(x),...,s" " (x) are continuous at the knots x, .
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= Effective degrees of freedom per segment:

1
n+l - n = 1
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= Cardinal splines = unit spacing and infinite number of knots

I:> The right framework for signal processing

B-spline basis functions

= B-spline of degree n
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= Theorem (Schoenberg, 1946)

Any cardinal spline can be represented as a linear combination
of shifted B-splines:

5= Y (B x= k)
&

B-spline interpolation

= Discrete B-spline kernels w6
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= B-spline interpolation: filtering solution

F = e -], = (b )b = )= ("= f)k
#
= Efficient recursive solution

@ s = Sa
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|:> Cascade of first order recursive filters

-
l+az™

causal anti-causal

Cubic spline (1=3) Basis functions
e E R 10
Generic C-code (splines of any degree n)
= Main recursion
void  ConvertTolnterpolationCoefficients (
double ], long DataLength, double z[], long NbPoles, double Tolerance)
{double Lambda = 1.0; long n, k;
if (DataLength == 1L) return;
OL; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[K]) * (1.0 - 1.0/ z[K]);
n < DataLength; n++) cfn] *= Lambda;
k< NbPoles; k++) {
ialCausalCoefficient(c, DataLength, z[K], Tolerance);
for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
c[DataLength - 1L] = (z[k] / (z[K] * z[K] - 1.0))
* (2zIK] * c[DataLength - 2L] + c[DataLength - 1L]);
for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[K] * (cIn + 1LI- c[n]); }
® Initialization
double InitialCausalCoefficient (
double c{], long DataLength, double z, double Tolerance)
{ double Sum, zn, z2n, iz; long n, Horizon;
Horizon = (long)ceil(log(Tolerance) / log(fabs (2)));
if (DataLength < Horizon) Horizon = DataLength;
zn =z; Sum = c[0];
for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *=z}
return(Sum);
12




Spline interpolation

= Equivalent forms of spline representation
5(x) = DB (x=k) = 3 (stk) = (b)) (0)B" (x ~ k)
=7 =2

= 3 s (x k)

= Cardinal (or fundamental) spline

@)= > ) (B (x -k

Finite cost implementation of an infinite impulse response
interpolator !

Limiting behavior

= Spline interpolator
Frequency response

Fourier oo (sin(@/2)\"™ 1
o= 5@n

Impulse response

@i ()

= Asymptotic property

The cardinal spline interpolators converge to the sinc-interpolator
(ideal filter) as n— +e:

1iln¢[;‘ (@) =sinc(x),  lim H"(w) = rect(w /2m) (in all L-norms )

|:> Includes Shannon'’s theory as a particular case !

Geometric transformation of images

= 2D separable model

(k4 K1) (1, +K-1)

faey= % 3 kDB (x-kB"(y=1)
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— 2Dre-sampling —»

= Applications
zooming, rotation, re-sizing, re-formatting, warping

Cubic spline coefficients in 2D

"y I

Digital filter
— (recursive, —>
separable)

ul

Pixel values  f(k.)

B-spline coefficients c(k,/)

Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Cubic spline

Bilinear Windowed-sinc

SPLINES AND APPROXIMATION THEORY

= Order of approximation
= Quantitative L, approximation




Order of approximation

= General “shift-invariant” space at scale a

V(@) :{st,m: Eca)w(f—k): ce fz}
kez a

= Projection operator
VfEL, Bf=argminlf-s], €V,

= Order of approximation
DEFINITION
A scaling/generating function ¢ has order of approximation L iff
Vi EWL, |f =P, = Cat| 1),

B-splines of degree n have order of approximation L=n+1

Spline reconstruction of a CAT-scan

Piecewise constant

L=1

Cubic spline

L=4

19
High-quality image interpolation
=« B-splines & O-MOMS: best cost-performance tradeoff
o T T T T T T T T
Thévenaz et al., Handbook of Medical Image Processing, 2000
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APPLICATION EXAMPLE

= Image Registration
Rigid body
Elastic

22

Splines: multi-modal image registration

Specificities of the approach

= Criterion: mutual-information
(Colignon et al., 1996)

= Cubic spline model

high quality
sub-pixel accuracy
= Multiresolution strategy
= Marquardt-Levenberg like
optimizer
= -

Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000
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Splines: registration by elastic deformation

= Problem formulation
Optimization criterion:

referenceimage  test image

min [0 - £

= Principles of the method

. Number: 0

Splines Inage: 296x256

= continuous image Pix/knot: 32x32
representation E: 749.685

= deformation model with
adjustable size

Multiresolution; coarse-to-fine
= image pyramids
= deformation model

Non-linear optimization

Kybic et al., IEEE Trans. Medical Imaging, 2000
24




INTERPOLATION OF NOISY DATA

= Tikhonov regularization
= Smoothing splines
= MMSE (or Wiener) solution
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Fitting noisy data: Tikhonov regularization

= Context

= Input data {f[kl},_, corrupted by noise

=
= Model : continuous-time function s(r)
>
= Data term: &, = E\ k] = (k)
i<
= Spline energy : &, =HD"sHi (measures lack of smoothness)

A priori knowledge

= Possible formulations oo of signal class
X /
min, & subject 1o £, =G, | on min, &, subject m[gLsch
I
)(‘:‘Ei:,‘! Sa ): & (Tikhonov regularization)

Lagrange multiplier
grangt P! 2

Smoothing splines

Theorem [Schoenberg, 1964]
For a given sequence f[k]€ ¢, and regularization parameter 4 =0, the minimizer of

5,(f) = arg Eiﬂ{ (1K= s(h)’ + 2D, }
? lkez :

is unique and is a cardinal polynomial spline of degree n=2L-1.

= Example : L=2 "
Spline energy : HD’sﬂL = _ﬂ.‘v’(/)\zdt (bending energy)
Optimal solution: cubic spline (n=2x2-1=3)

Extreme cases:
A—+ : best fitting line (linear regression)
2—0 : cubic spline interpolant (minimum curvature solution)
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Cubic smoothing spline: example

Interpolating spline (A=0)

801 o
6o Noisy data points:
0 S k) = fo (k) + nlk]
20+ \
of-

Regression line (A—+x)

20,
40 Smoothing spline (optimal regularization)
60
-80 .
Noise-free curve  f; (1)
-100 ©0
©
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Smoothing splines: implementation

= Digital filter-based implementation

Smoothing spline fit:

flk] H,) ,  clkl 5,() = EeA[k] B'(t-k)
Input signal B-spline coefficients kez
(discrete) - (discrete)

Digital filter

(recursive)

147 =0 (interpolator)
= Smoothing spline filter 'f'
1 05: A=1
H@ =<5 v 06}
SB Kz 4 A (-2 42-27") 10
£ 04l
02+ 100

0 01 02 03 04 05

Frequency responses of smoothing cubic spline filters

Generalization: L'L smoothing splines

L
L =D"+aD"" +---+q,1 : differential operator of order L~ «<*—  L(w)= H(jw -a)
i1

Theorem [U.-Blu, 2004]
For a given sequence f[k]€ ¢, and regularization parameter 4 =0, the minimizer of

5,(1)=arg l;l‘:ln{;( FT= 5(0))’ + 2L},

is the unique cardinal L'L-spline : s, (1) = Ekez(hﬂ = f)Ik] @(t=k),
where (1) is a corresponding exponential B-spline of order 2L and
where h, is a suitable smoothing spline filter.

= Exponential B-spline

L

‘I ool

Plo)=t—— I

H‘jw—a,‘z
kel




Stochastic signal models

= Wide sense stationary processes
Realization of the stochastic process: x(7)
Zero mean: E{x(t)} =0
Autocorrelation function : E{x(l)x(t + ‘r)} =c, (DEL,

Spectral density function:  C () =F{c (1)} €L,

= Stochastic differential equation

L{x(0)} = w(t) (driven by white Gaussian noise)
c,.(T)= (J‘é -(T)

w() Eﬂ X [ o
J B

. Spectral shaping o2 Whitening fiter
C,.(w)=0y Cow)=—"— ‘3

L(w)|

MMSE (or Wiener) solution

= Statistical hypotheses
Discrete measurements (signal + noise) : y[k]= x(k) + n[k]
Signal autocorrelation: ¢, (t) such that L'L{c ()} = o, - 8(7)

Discrete white noise with variance 0% = cm,[k] =0’ é[k]

= MMSE continuous-time signal estimation

Theorem [U.-Blu, 2004]
Under the above assumptions, the linear Minimum Mean Square Error estimator of
x(t) attime ¢ =r, given the measurements {y[]}

ey 18 8,(1)) With A =07 /o, where

5,(t) is L'L cardinal smoothing spline fit of {y[k]},_,, as specified previously.

Remark: optimal over all estimators if one adds the assumption of Gaussianity
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On the optimality of splines

= Splines and continuous-time Tikhonov regularization

Spline interpolators are optimal: they have minimun « spline
energy » (e.g., curvature) among all possible interpolants

Smoothing splines are optimal: they provide the best regularized fit
of the input data, among all possible functions

= Splines are optimal statistical estimators
Smoothing spline = MMSE estimator for fractal-like (1/wt) processes
Optimal regularization factor: A o« o2
Can yield optimal estimators of derivatives, etc.

Estimator can be fine tuned to the spectral characteristics of input
signal = generalized splines

(work in progress)
33

Bottom line for practical applications

1. Selection of the “optimal” spline space (e.g., cubic splines)

2. B-spline coefficients determination via an appropriate filtering
algorithm (interpolation or smoothing spline)

/
Sk clk]

~—»! Digital algorithm ——»

., o
A =

o =

3. Interpolation step (remains the same in all cases)

5(x) = D clKlg(x k)

kez

CONCLUSION

= Distinctive features of splines
Simple to manipulate
Smooth and well-behaved
Excellent approximation properties
Multiresolution properties (Wavelets !)
Optimality properties (variational, statistical, ...)

= Splines and medical imaging
A story of avoidance and, more recently, love....
Best cost/performance tradeoff
Many applications .....

= Unifying signal processing formulation
Tools: digital filters, convolution operators
Efficient recursive filtering solution
Exact calculus (differential operators, etc.)
Flexibility: piecewise constant to bandlimited 35

Splines: the end of the tunnel

= Recent survey article on interpolation, /EEE TMI, 2000
Comparison of 31 interpolation algorithms:
“It [the cubic B-spline interpolator] produces one of the best results in
terms of similarity to the original images, and of the top methods, it
runs fastest.”

= Addendum on spline interpolation, /EEE TMI, 2001
“Therefore, high degree B-splines are preferable interpolators for
numerous applications in medical imaging, particularly if high
precision is required.”

= Recent evaluation of interpolation, Med. Image Anal., 2001
Comparison of 126 interpolation algorithms:
“The results show that spline interpolation is to be preferred over all
other methods, both for its accuracy and its relatively low cost. ”

= High-quality spline interpolation algorithms were included in the 2003

release of SPM (version 2b), a freely-available software package that
is used worldwide for the statistical analysis of fMRI data.
36
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