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Back to the fundamentals:  interpolation

 Fundamental issue in imaging and
signal processing
Linking the discrete and the continuous

Acquisition

Algorithm design

 Mismatch between classical theory and practice
 Classical theory : Shannon’s sampling theorem
 Practice: nearest neighbor, linear interpolation

 Limitations of Shannon’s sampling theory
 Ideal lowpass filters do not exist
 Incompatible with finite support signals
 Gibbs oscillations
 Slow decay of sinc(x)

 Basic problem
How do you interpolate a signal ?
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Interpolation and bio-imaging
Image processing task Specific operation Imaging modality

Tomographic
reconstruction

• Filtered backprojection
• Fourier reconstruction
• Iterative techniques
• 3D + time

Commercial CT (X-rays)
EM
PET, SPECT
Dynamic CT, SPECT, PET

Sampling grid
conversion

• Polar-to-cartesian coordinates
• Spiral sampling
• k-space sampling
• Scan conversion

Ultrasound (endovascular)
Spiral CT, MRI
MRI

2D operations
• Zooming, panning, rotation
• Re-sizing, scaling

All

• Stereo imaging
• Range, topography

Fundus camera
OCT

3D operations
• Re-slicing
• Max. intensity projection
• Simulated X-ray projection

CT, MRI, MRA

Visualization

Surface/volume rendering
• Iso-surface ray tracing
• Gradient-based shading
• Stereogram

CT
MRI

Geometrical correction • Wide-angle lenses
• Projective mapping
• Aspect ratio, tilt
• Magnetic field distortions

Endoscopy
C-Arm fluoroscopy
Dental X-rays
MRI

Registration • Motion compensation
• Image subtraction
• Mosaicking
• Correlation-averaging
• Patient positioning
• Retrospective comparisons
• Multi-modality imaging
• Stereotactic normalization
• Brain warping

fMRI, fundus camera
DSA
Endoscopy, fundus camera,
EM microscopy
Surgery, radiotherapy

CT/PET/MRI

• Contours
• Ridges
• Differential geometry

AllFeature detection

Contour extraction
• Snakes and active contours MRI, Microscopy (cytology)
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Splines: a unifying framework

Linking the discrete and the continuous …..

Splines

      WaveletsMultiresolution        
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Splines: Bad press phenomenon

 Classical review article on interpolation, IEEE TMI, 1983
Comparison of four interpolators:
“The cubic B-spline provides the most smoothing.”

 Classical book on Digital Image Processing, 1991 (2nd ed)
About high order B-splines:
“[out-of-band] interpolation error reduces significantly for higher order
interpolation functions, but at the expense of resolution error [i.e.,
distortion]”

 Recent book on Volume Rendering, 1998
“The results of scaling the original image using [cubic] B-spline
interpolation are shown in Figure 5.20. You can see the blurring
effects …..”

  

€ 

M
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SPLINE INTERPOLATION

 Splines: definition

 B-spline basis functions

 B-spline interpolation

 Spline interpolators

 Geometric transformation of images
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Splines: definition

Definition: A polynomial spline of degree n , s(x)  , with knots …< xk < xk+1 <… is
a function with the following two properties:

 Piecewise polynomial:
s(x)  is a polynomial of degree n  in each interval xk, xk+1[ ) ;

 Higher-order continuity:
s(x),s(1)(x),…,s(n −1)(x)  are continuous at the knots xk .

 Effective degrees of freedom per segment:
          n+1                             −          n           =      1 
   (polynomial coefficients)   (constraints)

 Cardinal splines = unit spacing and infinite number of knots

               The right framework for signal processing
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B-spline basis functions

 B-spline of degree n

  

Basis functionsCubic spline (n=3)

€ 

s(x) = c(k)β n (x − k)
k∈Z
∑

Any cardinal spline can be represented as a linear combination
of shifted B-splines:

 Theorem (Schoenberg, 1946) 

∗ ∗…
  

€ 

β n (x) = β 0 ∗ β 0 ∗L∗ β 0

(n +1)  times
1 2 4 4 3 4 4 (x), β 0(x) =

1 − 1
2 ≤ x < 1

2

0, otherwise
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B-spline interpolation

 Discrete B-spline kernels

€ 

b1
n(k):= β n (x)

x=k
    z← →      B1

n(z) = β n (k)z −k
k= − n/ 2 

n /2 

∑

 B-spline interpolation: filtering solution

€ 

f (x) x= k = c(l)β n(x − l)
x= k

l∈Z
∑ = b1

n ∗c( )(k)

€ 

⇒    c(k) = (b1
n )−1 ∗ f( )(k)

 

 Efficient recursive solution

€ 

(b1
3 )−1(k)   z← →      6

z + 4 + z −1 =
−6α

(1− αz)(1− αz −1)

€ 

1
1 +αz−1

€ 

1
1 +αz

Cascade of first order recursive filters

causal anti-causal

(symmetric exponential)

4/6

1/61/6

12

Generic C-code  (splines of any degree n)

void    ConvertToInterpolationCoefficients (
            double c[ ],   long DataLength,    double  z[ ],   long NbPoles,   double  Tolerance)
 {double Lambda = 1.0; long n, k;
    if (DataLength == 1L) return;
    for (k = 0L; k < NbPoles; k++) Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
    for (n = 0L; n < DataLength; n++) c[n] *= Lambda;
    for (k = 0L; k < NbPoles; k++) {
        c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
        for (n = 1L; n < DataLength; n++) c[n] += z[k] * c[n - 1L];
        c[DataLength - 1L] = (z[k] / (z[k] * z[k] - 1.0))
        * (z[k] * c[DataLength - 2L] + c[DataLength - 1L]);
        for (n = DataLength - 2L; 0 <= n; n--) c[n] = z[k] * (c[n + 1L]- c[n]); }
}

double  InitialCausalCoefficient (
            double  c[ ],  long    DataLength,  double  z,  double  Tolerance) 
{  double Sum, zn, z2n, iz; long n, Horizon;
    Horizon = (long)ceil(log(Tolerance) / log(fabs(z)));
    if (DataLength < Horizon) Horizon = DataLength;
    zn = z; Sum = c[0];
    for (n = 1L; n < Horizon; n++) {Sum += zn * c[n]; zn *= z;}
    return(Sum);
}

 Main recursion

 Initialization
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Spline interpolation

€ 

ϕint
n (x) = (b1

n )−1
k∈Z
∑ (k)β n (x − k)

 Equivalent forms of spline representation

 Cardinal (or fundamental) spline

= s(k)ϕ int
n (x − k)

k∈Z
∑

Finite cost implementation of an infinite impulse response
interpolator !

€ 

s(x) = c(k)β n (x − k) =
k∈Z
∑ s(k)∗ (b1

n )−1(k)( )β n (x − k)
k∈Z
∑
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Limiting behavior

 Spline interpolator

€ 

ϕint
n (x)   Fourier← →      H n (ω) =

sin(ω / 2)
ω / 2

 
 

 
 

n +1 1
B1
n (e jω )

Impulse response Frequency response

 Asymptotic property

€ 

lim
n→∞

ϕ int
n (ω) = sinc(x),       lim

n→∞
Hn (ω) = rect(ω / 2π)

The cardinal spline interpolators converge to the sinc-interpolator
(ideal filter) as n→ +∞:

(in all Lp-norms )

Includes Shannon’s theory as a particular case !

  

+∞

1

2
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Geometric transformation of images

 2D separable model

2D re-sampling2D filtering
(separable)

f (k,l) c(k,l)

f (x, y) = c(k, l)βn(x − k)
l=l1

(l1 +K −1)

∑
k=k1

(k1 +K−1)

∑ βn (y − l)

 Applications

zooming, rotation, re-sizing, re-formatting, warping

x, y( )
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Cubic spline coefficients in 2D

Pixel values B-spline coefficientsf (k,l) c(k,l)

Digital filter
(recursive, 

   separable)
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Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Truncated sinc Cubic splineTruncated sinc Cubic spline

Bilinear Windowed-sinc Cubic spline
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SPLINES AND APPROXIMATION THEORY

 Order of approximation

 Quantitative L2 approximation
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Order of approximation

 General “shift-invariant” space at scale a

 Projection operator

∀f ∈L2,     Pa f = arg min
sa ∈Va

f − sa L2
    ∈Va

A scaling/generating function ϕ  has order of approximation 

€ 

L  iff

€ 

∀f ∈W2
L ,    f − Pa f L2

≤C ⋅ aL ⋅ f (L )
L2

 Order of approximation

DEFINITION

1 2 3 4 5

2 4

a = 1

a = 2

B-splines of degree n have order of approximation L=n+1

  

€ 

Va (ϕ) = sa (x) = c(k)ϕ x
a
− k

 

 
 

 

 
 :   c ∈ l 2

k∈Z
∑
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Spline reconstruction of a CAT-scan

Piecewise constant

Cubic spline

€ 

L =1

€ 

L = 4
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High-quality image interpolation

 B-splines & O-MOMS: best cost-performance tradeoff

Web demo

Thévenaz et al., Handbook of Medical Image Processing, 2000
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Execution time (s rot-1)

Bspline(2)

Bspline(4)

Bspline(5)

Bspline(3)

Bspline(6)

German [1997]

Meijering(5) [1999]
Schaum(3) [1993]

Dodgson [1997]

Nearest-neighbor

Schaum(2) [1993] Meijering(7) [1999]

Sinc Hamming(4)

Keys [1981]

Linear
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APPLICATION EXAMPLE

 Image Registration
 Rigid body

 Elastic
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Splines: multi-modal image registration

Specificities of the approach

 Criterion: mutual-information
(Colignon et al., 1996)

 Cubic spline model
 high quality
 sub-pixel accuracy

 Multiresolution strategy

 Marquardt-Levenberg like
optimizer
 Speed
 Robustness

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000 
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 Problem formulation

Splines: registration by elastic deformation

aaaaa

reference image test image

min
T∈Va

f1(x) − f2 (T (x))

 Principles of the method
 Splines

 continuous image
representation

 deformation model with
adjustable size

 Multiresolution; coarse-to-fine
 image pyramids
 deformation model

  Non-linear optimization

 Optimization criterion:

Kybic et al., IEEE Trans. Medical Imaging, 2000
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INTERPOLATION OF NOISY DATA

 Tikhonov regularization

 Smoothing splines

 MMSE (or Wiener) solution
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Fitting noisy data: Tikhonov regularization

 Input data 

€ 

f [k]{ }k∈Z  corrupted by noise

 Model : continuous-time function 

€ 

s(t)

 Data term : 

€ 

ξdata = f [k]− s(k)
k∈Z
∑

2

 Spline energy : 

€ 

ξL = DLs
L2

2     (measures lack of smoothness)

 Context

 Possible formulations

€ 

min
s( t )∈W2

L
 ξdata + λ ⋅ξL

Lagrange multiplier

  

€ 

c

(Tikhonov regularization)€ 

min
s( t )∈W2

L
 ξL    subject to   ξdata = C1

A priori knowledge
of noise variance

€ 

min
s( t )∈W2

L
 ξdata    subject to   ξL ≤ C2OR

A priori knowledge
of signal class
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Smoothing splines

Theorem [Schoenberg, 1964]
For a given sequence   

€ 

f [k]∈ l 2  and regularization parameter 

€ 

λ ≥ 0, the minimizer of

€ 

sλ(t) = arg min
s∈W2

L
f [k]− s(k)( )2

+ λ ⋅ DLs
L2

2

k∈Z
∑
 
 
 

 
 
 

is unique and is a cardinal polynomial spline of degree 

€ 

n = 2L −1.

 Example : L=2
 Spline energy :                                           (bending energy)

 Optimal solution: cubic spline (n=2×2-1=3)

 Extreme cases:
ν λ→+∞ : best fitting line (linear regression)

ν λ→0    : cubic spline interpolant (minimum curvature solution)

€ 

D2s
L2

2
= ˙ ̇ s (t) 2

−∞

+∞

∫ dt
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Cubic smoothing spline: example

Noise-free curve

Smoothing spline (optimal regularization)

€ 

f (k) = f0(k) + n[k]
Noisy data points:

€ 

f0(t)

Interpolating spline (λ=0)

Regression line (λ→+∞)
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Smoothing splines: implementation

 Digital filter-based implementation

€ 

f [k]

€ 

cλ[k]

€ 

Hλ(z) =
1

β n (k)z−k
k∈Z
∑ + λ ⋅ (−z + 2 − z−1)L

Input signal
(discrete)

Digital filter
(recursive)

B-spline coefficients
(discrete)

Smoothing spline fit:

€ 

sλ(t) = cλ[k]
k∈Z
∑ β n (t − k)

 Smoothing spline filter

€ 

Hλ(z)

€ 

λ = 0

€ 

λ =1

€ 

10

€ 

100

Frequency responses of smoothing cubic spline filters

(interpolator)
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Generalization: L*L smoothing splines

Theorem [U.-Blu, 2004]
For a given sequence   

€ 

f [k]∈ l 2  and regularization parameter 

€ 

λ ≥ 0, the minimizer of

€ 

sλ(t) = arg min
s∈W2

L
f [k]− s(k)( )2

+ λ ⋅ Ls L2

2

k∈Z
∑
 
 
 

 
 
 

is the unique cardinal 

€ 

L∗L -spline : 

€ 

sλ(t) = hλ ∗ f( )[k] ϕ(t − k)
k∈Z∑ ,

where 

€ 

ϕ(t) is a corresponding exponential B-spline of order 

€ 

2L  and
where 

€ 

hλ is a suitable smoothing spline filter.

  

€ 

L =DL + a1D
L−1 +L+ aLI  : differential operator of order 

€ 

L

 Exponential B-spline

€ 

ˆ L (ω) = ( jω −α i)
k=1

L

∏

€ 

ˆ ϕ (ω) =

1− eα i − jω
2

k=1

L

∏

jω −α i
2

k=1

L

∏

  

€ 

F← →  

€ 

ϕ(t)

€ 

L =1

  

€ 

F -1
← →   
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Stochastic signal models

 Wide sense stationary processes

Realization of the stochastic process: 

Zero mean:

€ 

x(t)

€ 

E x(t){ } = 0
Autocorrelation function :

€ 

E x(t)x(t + τ){ } = cxx (τ )∈ L2

Spectral density function :   

€ 

Cxx (ω) = F{cxx (τ)}∈ L2

 Stochastic differential equation

€ 

L{x(t)} = w(t)

€ 

L−1

€ 

x(t)

€ 

Cxx (ω) =
σ 0

2

ˆ L (ω)
2

€ 

L

€ 

w(t)

€ 

Cww(ω) =σ 0
2

€ 

w(t)

Spectral shaping Whitening filter

(driven by white Gaussian noise)

€ 

cww(τ) =σ 0
2 ⋅ δ(τ )
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MMSE (or Wiener) solution

 Statistical hypotheses

Discrete measurements (signal + noise) : 

€ 

y[k] = x(k) + n[k]

Signal autocorrelation: 

€ 

cxx (τ )   such that  L∗L cxx (τ){ } =σ 0
2 ⋅ δ(τ)

Discrete white noise with variance

€ 

σ 2   ⇒   cnn k[ ] =σ 2 ⋅ δ k[ ]

Theorem  [U.-Blu, 2004]

Under the above assumptions, the linear Minimum Mean Square Error estimator of

€ 

x(t)  at time 

€ 

t = t0 given the measurements 

€ 

y[k]{ }k∈Z  is 

€ 

sλ(t0)  with 

€ 

λ =σ 2 /σ 0
2 , where

€ 

sλ(t)  is 

€ 

L∗L  cardinal smoothing spline fit of 

€ 

y[k]{ }k∈Z , as specified previously.

 MMSE continuous-time signal estimation

Remark: optimal over all estimators if one adds the assumption of Gaussianity 
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On the optimality of splines

 Splines and continuous-time Tikhonov regularization
 Spline interpolators are optimal: they have minimun « spline

energy » (e.g., curvature) among all possible interpolants

 Smoothing splines are optimal: they provide the best regularized fit
of the input data, among all possible functions

 Splines are optimal statistical estimators
 Smoothing spline = MMSE estimator for fractal-like (1/ωL) processes

 Optimal regularization factor:   λ ∝ σ2

 Can yield optimal estimators of derivatives, etc.

 Estimator can be fine tuned to the spectral characteristics of input
signal   generalized splines

(work in progress)
34

1. Selection of the “optimal“ spline space (e.g., cubic splines)

Bottom line for practical applications

3. Interpolation step (remains the same in all cases)

€ 

s(x) = c[k]ϕ(x − k)
k∈Z
∑

2. B-spline coefficients determination via an appropriate filtering
algorithm (interpolation or smoothing spline)

Digital algorithm

€ 

f [k]

€ 

c[k]

€ 

λopt =
σ 2

σ 0
2

35

CONCLUSION

 Distinctive features of splines
 Simple to manipulate
 Smooth and well-behaved
 Excellent approximation properties
 Multiresolution properties  (Wavelets !)
 Optimality properties (variational, statistical, …)

 Splines and medical imaging
 A story of avoidance and, more recently, love….
 Best cost/performance tradeoff
 Many applications …..

 Unifying signal processing formulation
 Tools: digital filters, convolution operators
 Efficient recursive filtering solution
 Exact calculus (differential operators, etc.)
 Flexibility: piecewise constant to bandlimited 36

Splines: the end of the tunnel

 Recent survey article on interpolation, IEEE TMI, 2000
Comparison of 31 interpolation algorithms:
“It [the cubic B-spline interpolator] produces one of the best results in
terms of similarity to the original images, and of the top methods, it
runs fastest.”

 Addendum on spline interpolation, IEEE TMI, 2001
 “Therefore, high degree B-splines are preferable interpolators for
numerous applications in medical imaging, particularly if high
precision is required.”

 Recent evaluation of interpolation, Med. Image Anal., 2001
Comparison of 126  interpolation algorithms:
“ The results show that spline interpolation is to be preferred over all
other methods, both for its accuracy and its relatively low cost. ”

 High-quality spline interpolation algorithms were included in the 2003
release of SPM (version 2b), a freely-available software package that
is used worldwide for the statistical analysis of fMRI data.
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