

Think analog, act digital

Michael Unser Biomedical Imaging Group EPFL Lausanne, Switzerland

SPCOM'04, December 11-14, 2004, Indian Institute of Sciences, Bangalore, India

Revival of continuous-time thinking

- Recent trends in SP
 - Wavelet theory, multiresolution analysis
 - Self-similarity, fractals, analysis of singularities
 - Partial differential equations
 - Spline-based signal processing
- Continuous/discrete formulation
 - "Think analog, act digital"
 - Applications:
 - Fractional delays, sampling rate conversion
 - Discretization of differential operators
 - Interpolation
 - ...

Is continuous-time signal processing dead?

Arguments in favor of its suppression:

- The modern world is discrete (CDs, DVDs, WEB, etc...)
- Modern SP courses concentrate on digital signal processing
- Most processing is discrete (DSPs, PCs, etc...)
- Students don't like the Laplace transform...
- However...
 - Real-world signals are continuous
 - Often, the end product is analog: control systems, sound reproduction systems, etc.
 - Don't forget the interface: A-to-D and D-to-A
 - Some discrete algorithms require continuous-time thinking

2

OUTLINE

- In search of the missing link
- E-splines
- B-spline calculus
- Application: hybrid signal processing

IN SEARCH OF THE MISSING LINK

Start by reading Schoenberg, 1946

Teach "Signals and Systems" ...

5

What is the link?

Answer: ratio of Fourier transforms

$$\hat{\beta}_{\alpha}(\omega) = \frac{\hat{p}_{\alpha}(\omega)}{P_{\alpha}(e^{j\omega})} = \frac{1 - e^{\alpha}e^{-j\omega}}{j\omega - \alpha}$$

$$T^{-1} \downarrow$$

$$\beta_{\alpha}(t) = \rho_{\alpha}(t) - e^{\alpha} \cdot \rho_{\alpha}(t - 1)$$

Reproduction formula

 $\frac{\rho_a(t)}{\rho_a(t)} = u(t) \cdot e^{at} = \sum_{k=0}^{+\infty} e^{ak} \beta_a(t-k) = \sum_{k=0}^{+\infty} p_a[k] \beta_a(t-k)$

Continuous-time signal

Compactly-supported basis functions

Continuous vs discrete: example

- Causal exponential
- Continuous-time version

Discrete-time version

6

Basic continuous-time convolution operators

Operator	Notation	Impulse response	Frequency response
Identity	I{ }	$\delta(t)$	1
Shift	$S_\tau\big\{f\big\}=f(t-\tau)$	$\delta(t-\tau)$	$e^{-j\omega au}$
Integral	$D^{-1}\{ \} = \int_{-\infty}^{t} dt$	$1_{+}(t)$	$\pi\delta(\omega) + \frac{1}{j\omega}$
Multiple integral	$D^{-n}\{\ \}$	$\frac{t_+^{n-1}}{(n-1)!}$	$\frac{j^{n-1}\pi\delta^{(n-1)}(\omega)}{(n-1)!} + \frac{1}{(j\omega)^n}$
Simple differential system	$(D-\alpha I)^{-1}\{$	$1_{+}(t) \cdot e^{ct}$	$\frac{1}{j\omega - \alpha} \qquad \text{Re}\{\alpha\} < 0$
Iterated differential system	$(D-\alpha I)^{-n}\{$	$\frac{t_{+}^{n-1}e^{cat}}{(n-1)!}$	$\frac{1}{(j\omega - \alpha)^n} \qquad \text{Re}\{\alpha\} < 0$

... and their discrete counterparts

Name	Discrete time specification	z-transform
Unit impulse	$\delta[k]$	1
Shift	$\delta[k-k_0]$	z^{-k_0}
Unit step	$p_0[k] = \begin{cases} 0, & k < 0 \\ 1, & k \ge 0 \end{cases}$	$\frac{1}{1-z^{-1}}$
Discrete mononial	$P_0^{[n-1]}[k] = \begin{cases} 0, & k < 0 \\ \prod_{m=1}^{n-1} (k+m), & k \ge 0 \end{cases}$	$\frac{1}{\left(1-z^{-1}\right)^n}$
Causal exponential	$p_{\alpha}[k] = \begin{cases} 0, & k < 0 \\ e^{\alpha k}, & k \ge 0 \end{cases}$	$\frac{1}{1 - e^{\alpha} z^{-1}}$
Discrete exponential monomial	$p_{\alpha}^{[n-1]}[k] = \begin{cases} 0, & k < 0 \\ e^{\alpha k} \prod_{m=1}^{n-1} (k+m), & k \ge 0 \end{cases}$	$\frac{1}{\left(1-e^{\alpha}z^{-1}\right)^{n}}$

9

E-SPLINES

- Generalized splines
- Exponential B-splines
- B-spline properties
- B-spline representation

General concept of an L-spline

 $L\{\cdot\}$: differential operator (shift-invariant)

 $(D-\alpha I)^n\{ \}$ n

 $\delta(t) : \mbox{Dirac distribution}$

Definition A: The continuous-time function s(t) is an *L-spline* with knots $\{t_k\}_{k\in\mathbb{Z}}$ iff:

$$L\{s(t)\} = \sum_{k \in \mathbb{Z}} a_k \delta(t - t_k)$$

Definition B: The continuous-time function s(t) is a *cardinal L-spline* iff:

$$L\{s(t)\} = \sum_{k \in \mathbb{Z}} a[k]\delta(t-k)$$

П

12

Exponential spline defining operator

General differential system

$$\left(\mathbf{D}^{N} + a_{1}\mathbf{D}^{N-1} + \cdots + a_{N}\mathbf{I}\right)\left\{y(t)\right\} = \left(\mathbf{D}^{M} + \cdots + b_{M}\mathbf{I}\right)\left\{x(t)\right\}$$

$$\iff \mathbf{L}_{\widetilde{\alpha}}\left\{y(t)\right\} = x(t)$$

Rational transfer function

$$L_{\vec{\alpha}}(\omega) = \frac{\prod_{n=1}^{N} (j\omega - \alpha_n)}{\prod_{m=1}^{M} (j\omega - \gamma_m)}$$

Exponential spline parameters

$$\vec{\alpha} = (\alpha_1, \cdots, \alpha_N; \ \underline{\gamma_1, \cdots, \gamma_M}) \text{ with } M < N$$

Poles Zeros (optional)

13

15

Exponential B-splines

Localization operator (weighted finite differences)

$$\Delta_{\vec{lpha}}(z) = \prod_{n=1}^N (1 - e^{lpha_n} z^{-1})$$
 Mapping: $z = e^s$

Fourier domain formula

$$\hat{\beta}_{\vec{\alpha}}(\omega) = \frac{\Delta_{\vec{\alpha}}(e^{j\omega})}{L_{\vec{\alpha}}(\omega)}$$

Time-domain formula (inverse Laplace transform)

$$\beta_{\vec{\alpha}}(t) = \mathcal{L}^{-1} \left\{ \left(\prod_{n=1}^{N} \frac{1 - e^{\alpha_n - s}}{s - \frac{\alpha_n}{n}} \right) \cdot \prod_{m=1}^{M} (s - \frac{\gamma_m}{n}) \right\}$$
 poles

Example: piecewise-constant splines

Spline-defining operators

Continuous-time derivative: $D = L_0\{\cdot\} \longleftrightarrow j\omega$ Discrete-time derivative: $\Delta\{\cdot\} \longleftrightarrow 1-e^{-j\omega}$

Piecewise constant or D-spline

B-spline function:

$$\beta_0(t) = \Delta\{1_+(t)\} \quad \longleftrightarrow \quad \frac{1 - e^{-j\omega}}{j\omega}$$

$$\frac{1 - e^{-j\omega}}{j\omega}$$

Exponential B-splines (Cont'd)

- Properties
 - Piecewise exponential/polynomial (E-spline)
 - Compact support: size N
 - Continuity: Hölder-(N-M-1)

B-spline convolution property

Convolution property

$$(\beta_{\vec{\alpha}_1} * \beta_{\vec{\alpha}_2})(t) = \beta_{(\vec{\alpha}_1 : \vec{\alpha}_2)}(t)$$

$$(\vec{\alpha}_1:\vec{\alpha}_2) = \underbrace{(\alpha_{1,1},\ldots,\alpha_{1,N_1},\alpha_{2,1},\ldots,\alpha_{2,N_2};}_{\text{concatenation of poles}} \underbrace{\gamma_{1,1},\ldots,\gamma_{1,M_1},\gamma_{2,1},\ldots,\gamma_{2,M_2}}_{\text{concatenation of zeros}})$$

Example: g-splines

[Panda et al., 1996]

E-splines: B-spline representation

Space of cardinal E-splines

$$V_{\vec{\alpha}} = \left\{ s(t) : \mathcal{L}_{\vec{\alpha}} \{ s(t) \} = \sum_{k \in \mathbb{Z}} a[k] \delta(t-k) \right\} \cap L_2$$

B-spline representation

Theorem: The set of functions $\{\beta_{\vec{\alpha}}(t-k)\}_{k\in\mathbb{Z}}$ provides a Riesz basis of $V_{\vec{\alpha}}$ if and only if $\alpha_n - \alpha_m \neq j2\pi k, k \in \mathbb{Z}$ for all pairs of distinct, purely imaginary poles.

$$V_{\vec{\alpha}} = \left\{ \begin{array}{c} s(t) = \sum_{k \in \mathbb{Z}} c[k] \beta_{\vec{\alpha}}(t-k) : c \in \ell_2 \\ \end{array} \right\}$$
 discrete-time signal continuous-time signal (B-spline coefficients)

(B-spline coefficients)

Green function reproduction

Green function

$$\begin{array}{c}
?\\
\hline
\rho(t)
\end{array}$$

$$L\{\cdot\}$$

 $\rho(t)$: Green function of $L\{\cdot\}$

 $L\{\rho(t)\} = \delta(t)$

Green function reproduction = A-to-D translation

$$\rho_{\vec{\alpha}}(t) = \sum_{k \in Z} p_{\vec{\alpha}}[k] \beta_{\vec{\alpha}}(t-k)$$

with $P_{\vec{lpha}}(z)=\prod^{N}rac{1}{1-e^{lpha_{n}}z^{-1}}$

B-SPLINE CALCULUS

- Interpolation
- Convolution
- Modulation
- Differential operators

Interpolation

Interpolation condition

$$x[k] = \sum_{n \in \mathbb{Z}} c[n] \beta_{\vec{\alpha}}(t-n) \bigg|_{t=k} = (b_{\vec{\alpha}} * c) [k]$$

- B-spline kernel: $B_{\vec{\alpha}}(z) = \sum_{k=0}^{N-1} \beta_{\vec{\alpha}}(k) z^{-k}$
- Digital filtering algorithm

Recursive IIR filter

21

Modulation

• Input signal
$$s(t) = \sum_{k \in \mathbb{Z}} c[k] \beta_{\vec{\alpha}}(t-k)$$

B-spline modulation property

$$\beta_{\vec{\alpha}}(t) \cdot e^{j\omega_0 t} = \beta_{\vec{\alpha} + \vec{j}\omega_0}(t)$$

Continuous-time modulation

$$s(t) \cdot e^{j\omega_0 t} = \sum_{k \in \mathbb{Z}} \left(c[k] \cdot e^{j\omega_0 k} \right) \beta_{\vec{\alpha} + \vec{j}\omega_0}(t - k)$$

Discrete-time modulation

Convolution

Input signals

$$s_1(t) = \sum_{k \in \mathbb{Z}} c_1[k] \beta_{\vec{\alpha}_1}(t-k)$$
 $s_2(t) = \sum_{k \in \mathbb{Z}} c_2[k] \beta_{\vec{\alpha}_2}(t-k)$

B-spline convolution property

Continuous-time convolution

$$(s_1 * s_2)(t) = \sum_{k \in \mathbb{Z}} (c_1 * c_2)[k] \beta_{(\tilde{\alpha}_1 : \tilde{\alpha}_2)}(t - k)$$

Discrete-time convolution

Augmented order B-spline

22

Differential operators

B-spline differentials

$$L_{\vec{\alpha}_1} \left\{ \beta_{(\vec{\alpha}_1:\vec{\alpha}_2)}(t) \right\} = \Delta_{\vec{\alpha}_1} \left\{ \beta_{\vec{\alpha}_2}(t) \right\}$$

Implementation of differential operator

APPLICATION: HYBRID SIGNAL PROCESSING

- Analog filtering in the B-spline domain
- Consistent sampling
- Digitally-compensated D-to-A conversion

25

27

Example: first order butterworth

Filter to design: $H(s) = \frac{-\alpha}{s - \alpha}$

Input model: polynomial spline of order N_{1}

Design example: $\vec{\alpha}_1=(0,0) \implies R_{12}(z)=\frac{0.2786+0.2213z^{-1}}{1-0.5z^{-1}}$

Analog filtering in the B-spline domain

Analog filter: $h(t) = \sum_{k \in \mathbb{Z}} p[k] \beta_{\vec{\alpha}}(t-k)$

Input signal: $x(t) = \sum_{k \in \mathbb{Z}} c_1[k] \beta_{\vec{\alpha}_1}(t-k)$

Output signal: $y(t) = \sum_{k \in \mathbb{Z}} \left(p * c_1 \right) [k] \beta_{(\vec{\alpha}_1 : \vec{\alpha})}(t-k)$

 $R_2(z) = \frac{B_{(\vec{\alpha}_1:\vec{\alpha})}(z)}{\Delta_{\vec{\alpha}}(z)} = P(z) \cdot B_{(\vec{\alpha}_1:\vec{\alpha})}(z)$

26

Consistent sampling system

Reconstructed signal: $y(t) = \sum_{k \in \mathbb{Z}} c_2[k] \varphi_2(t-k)$

Consistency requirement:

$$\forall k \in \mathbb{Z}, \langle x(t), \varphi_1(t-k) \rangle = \langle y(t), \varphi_1(t-k) \rangle$$

Digital reconstruction filter:
$$Q_1(z) = \frac{\Delta_{\vec{\alpha}_1}(z)}{\sum_{k=0}^{N_1+N_2}\beta_{(\vec{\alpha}_1:\vec{\alpha}_2)}(k)z^{-k}}$$

Digitally-compensated D-to-A conversion

Reconstructed signal:

$$y(t) = \sum_{k \in \mathbb{Z}} c_2[k] \varphi_2(t-k)$$

Interpolation condition: $y(t)|_{t=k} = x[k] \label{eq:yt}$

Equivalent synthesis function:

$$\varphi_2(t) = \left(\beta_{(0)} * \rho_{\vec{\alpha}_2}\right)(t)$$

Digital correction filter:
$$Q_2(z) = \frac{\varDelta_{\vec{\alpha}_2}(z)}{\sum_{k=0}^{N_2+1}\beta_{(0:\vec{\alpha}_2)}(k)z^{-k}}$$

29

The end: Thank you!

- The key collaborator: Thierry Blu
- For more info:
 - M. Unser, "Splines: A Perfect Fit for Signal and Image Processing," *IEEE Signal Processing Magazine*, vol. 16, no. 6, pp. 22-38, November 1999.
 - M. Unser, T. Blu, "Cardinal Exponential Splines: Part I—Theory and Filtering Algorithms," *IEEE Trans. Signal Processing*, in press.
 - M. Unser, "Cardinal Exponential Splines: Part II—Think Analog, Act Digital," IEEE Trans. Signal Processing, in press.
- Preprints and demos: http://bigwww.epfl.ch/

CONCLUSION

- Cardinal E-splines: numerous attractive properties
 - B-spline representation = discrete signal
 - Family closed with respect to primary continuous-time signal processing operators (e.g., convolution, modulation, differential operators)
 - Easy to manipulate (e.g., recursive filtering algorithms, explicit formulas)
 - Generality: include all known brands of splines (polynomial, trigonometric, hyperbolic) and many more

30

More to come ...

- Unified formulation of continuous/discrete signal processing
- Variational properties: "Tikhonov" splines
- Unified formulation of stochastic signal processing
 - Hybrid Wiener filter
 - Fractals
- New type of exponential-preserving wavelets and multiresolution analysis