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Is continuous-time signal processing dead ?

= Arguments in favor of its suppression:
The modern world is discrete (CDs, DVDs, WEB, etc...)
Modern SP courses concentrate on digital signal processing
Most processing is discrete (DSPs, PCs, etc...)
Students don't like the Laplace transform...

= However...

Real-world signals are continuous

Often, the end product is analog: control systems,
sound reproduction systems, etc.

Don’t forget the interface: A-to-D and D-to-A
Some discrete algorithms require continuous-time thinking

Revival of continuous-time thinking

= Recent trends in SP
Wavelet theory, multiresolution analysis
Self-similarity, fractals, analysis of singularities
Partial differential equations
Spline-based signal processing

= Continuous/discrete formulation
“Think analog, act digital”
Applications:

= Fractional delays, sampling rate conversion
= Discretization of differential operators
= |nterpolation

OUTLINE

= |[n search of the missing link
= E-splines
= B-spline calculus

= Application: hybrid signal processing




IN SEARCH OF THE MISSING LINK

Start by reading Schoenberg, 1946

Teach “Signals and Systems” ...

Continuous vs discrete: example

= Causal exponential

Continuous-time version

4 w. e 1>0 r R 1
p(D)=e u(t)_{o, t<0 Pul@)= jo-a
Discrete-time version
ak
. _Je k>0 -, _ 1
Plk]=e "[k]_{o, k<0 @)=

What is the link ?

= Answer: ratio of Fourier transforms
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P(e") jo-a
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Basic continuous-time convolution operators

= Reproduction formula

Discrete signal

pu(D)=u(t) e = N B, (1-k)= 3 p.[K] B, (1K)
k=0

/ T

Continuous-time signal Compactly-supported basis functions
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... and their discrete counterparts

Name Discrete time specification z-transform
Unit impulse S[k] 1
Shift Sk - ky) Lo
Unit ste k 0, k<0 1
P polk]= 1, k=0 -z
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0, k<0 "
ne n-1 .
Discrete mononial Py~ '[k]= H(k m), k=0 (1 < )
m=1
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exponential Pulk]= % k=0 1-ez™"

. 1
Discrete 0, k<0 ( 1)"
exponential et =d Wt 1-e“z
monomial P TK= kl_[(k +m), k=0

m=1

D-to-A translating B-splines

B-spline Operator L Order N Frequency response

Dirac distribution
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E-SPLINES

= Generalized splines
= Exponential B-splines
= B-spline properties

= B-spline representation

General concept of an L-spline

L{-}: differential operator (shift-invariant)

d(t): Dirac distribution

Definition A: The continuous-time function s(t) is an L-spline with
knots {tx }rez iff:

L{s(t)} =) axd(t — ty)

keZ

Definition B: The continuous-time function s(t) is a cardinal
L-spline iff:

L{s(0)} = 3 alkls(e — k)

keZ




Exponential spline defining operator

= General differential system
(DY +a DV 4 and) {y(6)} = (DM + -+ baD) { (1)}

=  La{y()} ==(t)
= Rational transfer function
N .
La(w) _ H]\TZZI(],M - Oén)
[ [z (G — ym)

= Exponential spline parameters

&= (o1, ,an; Y, ) with M < N

Poles Zeros (optional)

Example: piecewise-constant splines

= Spline-defining operators
Continuous-time derivative: D = Lo{-} «— jw

Discrete-time derivative: A{-} «— 1—e 7%

= Piecewise constant or D-spline

s(t) =Y s[k]Bo(t — k) D{s(t)} = > alk] 5(t — k)

o keZ keZ As(k)
. j— T 4 T l v

- !

= B-spline function:

- flt) = ML} —

Exponential B-splines

= Localization operator (weighted finite differences)
N

Az(2) = H(l - e“”zfl) Mapping: z = €°

n=1

= Fourier domain formula

A@(@jw)

5el) = a0

= Time-domain formula (inverse Laplace transform)

st~ { (T ) T}

n=1 m=1

| zeros
poles

Exponential B-splines (Cont’d)

First-order B-splines 2nd-order B-splines
d=(a) a=(0,q)

Polynomial B-splines

a=(0,---,0)
/ [Schoenberg, 1946]

= Properties
Piecewise exponential/polynomial (E-spline)
Compact support: size N
Continuity: Holder-(N-M-1)




B-spline convolution property

= Convolution property
(Ba, * Ba,) (t) = Baian) ()

(071 N &2) =
(061,17 QLN O 1 Q2 NG YL Ls - ey VLM V2,05 - - > V2,Mo)
concatenation of poles concatenation of zeros
= Example: g-splines [Panda et al., 1996]

_ 1_€a—jw N
Bla,a)(t) = F 1{( e ) }

E-splines: B-spline representation

= Space of cardinal E-splines

Vi = {s(t) Lafs(t)} = > alklo(t — k)} N Ly

keZ
= B-spline representation
Theorem: The set of functions {3z (t — k) } xez provides a Riesz

basis of V if and only if v, — vy, # j27k, k € Z for all pairs of
distinct, purely imaginary poles.

Vg = {s(t) = clk]Bat—k):ce eg}

keZ

discrete-time signal
continuous-time signal (B-spline coefficients)

Green function reproduction

= Green function
p(t) : Green function of L{-}
? o(t)

L{} i
p(t) L{p(t)} = é(t)

= Green function reproduction = A-to-D translation

palt) =Y palk]Ba(t — k)

keZ

N

. 1

n=1

B-SPLINE CALCULUS

= Interpolation
= Convolution
= Modulation

= Differential operators
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Interpolation

= Interpolation condition

2k = Y elfalt—n)| = (bax ) [A

nez t=k
N—-1
= B-spline kernel:  Ba(2) =Y Ba(k)z*F
k=0
= Digital filtering algorithm
a[k] 1 c[k]

Recursive IIR filter
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Convolution

= [nput signals

sit) =Y alklfa(t—k)  solt) = calk]Ba(t — k)

kEZ kEZ

= B-spline convolution property

) I

(. B2) (1) = B 1) . J\E VaN

= Continuous-time convolution

(s1%52) (1) = Y (1% ca) [F] Braran) (t — F)
keZ /

Discrete-time convolution Augmented order B-spline
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Modulation

= Input signal  s(t) = > c[k]Ba(t — k)

keZ
= B-spline modulation property

Ba(t) St = ﬂ&+§’w0 (t)

J L

= Continuous-time modulation

s(t) - e =3 (c[k] - %) Bzt — k)
kEZ /'

Discrete-time modulation
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Differential operators

Iy

Bio-os(D)

SN

b D{Boos () =Ac{Bas(D}

= B-spline differentials

L&, {6(&1152)(t)} = A071 {6522 (t)}

= Implementation of differential operator

Interpolation Finite difference Resampling

s[k] 1 r[k] = La, {s}(t)]t=+

_'_’ A(Yl(z) _'_’ B(Yz(z) —
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APPLICATION: HYBRID SIGNAL PROCESSING

= Analog filtering in the B-spline domain

= Consistent sampling

= Digitally-compensated D-to-A conversion
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Analog filtering in the B-spline domain

Analog filter:  h(t) = 3, ., p[k]Ba(t — k)
Input signal: ~ x(t) = >, ., c1[k]Ba, (t — k)

Output signal:  y(t) = ZkeZ (p*c1) [k]ﬁ(alza) (t—k)

(&1 [k‘} CQI[.IC}

alk] [ 1 1 5 ylk]

| Ba ) [T Baw [P
Interpolation B-spline processing Resampling
(IR filter) (IR filter) (FIR filter)

Ba:a)(2)
Ry(z) = =952 = P(2) - Ba
2(2) A@(Z) (Z) (041 Cl)(z)
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Example: first order butterworth

—Q

Filter to design: H(s) =

S —

] Amplitude response

0.8 Ny =0 (impulse invariance method)
0.6
0.4
0.2 TS
. \/‘Z\:\\ \\8

Input model: polynomial spline of order Ny

. — -1
Design example: @; = (0,0) = Ria(z2) = %
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Consistent sampling system

Reconstructed signal: ~ y(t) = >_, ., calk]pa(t — k)

Consistency requirement:

Vk € Z, (x(t), p1(t — k) = (y(t), 1 (t — k)

(t) c1[k] co[k]

——Hg, (jw)—>| A/D Qi1(z) —
Analog filter A-to-D converter Digital filter

Digital reconstruction filter: ~ Q1(z) = A1, ¢)

N- N- N
SN2 B gy ()2

28




Digitally-compensated D-to-A conversion

CONCLUSION

Reconstructed signal: Interpolation condition:
y(t) = 2kez o[k pa(t — k) y()li=r = z[k]
Equivalent synthesis function:
Pa(t) = (ﬁ(o) * pay) (t) ﬁ%
] it — 40
— @Q(2) D/A Hg,(jw) —s
Correction filter D-to-A converter Analog filter

o Affz (Z)
foiﬁl ﬂ(o:&z) (k)Z_k

Digital correction filter: (Q2(2)
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= Cardinal E-splines: numerous attractive properties
B-spline representation = discrete signal

Family closed with respect to primary continuous-time
signal processing operators (e.g., convolution,
modulation, differential operators)

Easy to manipulate (e.g., recursive filtering
algorithms, explicit formulas)

Generality: include all known brands of splines
(polynomial, trigonometric, hyperbolic) and many
more
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The end: Thank you!

® The key collaborator:

= For more info:

M. Unser, "Splines: A Perfect Fit for Signal and Image
Processing," IEEE Signal Processing Magazine, vol. 16, no. 6,
pp. 22-38, November 1999.

M. Unser, T. Blu, "Cardinal Exponential Splines: Part [—Theory
and Filtering Algorithms," IEEE Trans. Signal Processing, in
press.

M. Unser, "Cardinal Exponential Splines: Part I1—Think Analog,
Act Digital," IEEE Trans. Signal Processing, in press.

* Preprints and demos: http:/bigwww.epfl.ch/
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More to come ...

= Unified formulation of continuous/discrete signal
processing

= Variational properties: “Tikhonov” splines

= Unified formulation of stochastic signal processing
Hybrid Wiener filter
Fractals

= New type of exponential-preserving wavelets and
multiresolution analysis
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