

24-Feb-05

Recent advances in image processing for bio-photonics

Michael Unser

Biomedical Imaging Group Institute of Imaging and Applied Optics EPFL, Lausanne, Switzerland

Biomedical Photonics, Engelberg, 2005

Biomedical Imaging Group (BIG)
Institute of Imaging and Applied Optics (IOA)
BIG: 10-15 people
Activities

Image processing tools for the biomedical community
Mathematical methods for image processing
Digital optics, computational imaging
Research
Teaching

Extended depth-of-field: results Focal series (z-stack) In-focus image composite

Super-resolution particle localization Objective: An efficient approach for locating particles in 3D space Main challenge: Acquisition model: Axial localization Characteristics of sub-resolution fluorescent particles Diffraction patterns appear in acquired images as particles move out of focus Image of a particle: point spread function (PSF) at the corresponding defocus distance Can the axial position be recovered from out-of-focus acquisitions ? Exploit diffraction patterns by fitting acquisitions to a theoretical model 21

19

Solution

'Resolution' limits

How can the maximal precision of the estimation be determined ?

Statistical tool: Cramér-Rao bound

- Theoretical lower bound on the variance of any unbiased estimator
- · In short: the performance of the best estimator / N . .

$$\operatorname{Var}(\hat{z}_p) \ge 1 / \sum_{n=1}^{N} \sum_{(x,y) \in \mathcal{S}} \bar{q}(x,y,z_n|z_p)^{-1} \left(\frac{\partial}{\partial z_p} \bar{q}(x,y,z_n|z_p)\right)^2$$

· Depends on the theoretical PSF model, thus on acquisition parameters · Key factor: presence of noise (high amount implies lower precision)

Multi-modal image registration

Specificities of the approach

- Criterion: mutual-information
- Cubic spline model
 high quality
 sub-pixel accuracy
- Multiresolution strategy
- Marquardt-Levenberg like optimizer
 Speed
 - Speed
 Bobustness

Acknowledgments

Biomedical Imaging Group

- Senior scientists: Thierry Blu. Ph. D.
- Philippe Thévenaz, Ph.D.
 Philippe Thévenaz, Ph.D.
 Daniel Sage, Ph. D.
 Dimitri Van de Ville, Ph.D.
 Brigitte Forster, Ph. D.
- Ph.D. Students François Aguet Rajesh Langoju Cedric Vonesch
- Former students or collaborators Mathews Jacob, Ph.D. (Univ. Illinois) Erik Meijering, Ph.D. (Erasmus Univ.) Michael Liebling (Caltech)

Swiss collaborators
EPFL - Prof. René Salathé (IOA) - Stéphane Bourquin, Ph.D. - Floyd Sarria - Harald Hirling, Ph.D. - Prof. John Maddocks

ISREC - Nathalie Garin, Ph.D. (MIME) - Claude Bonnard, Ph.D.

Uni GE / F. Miecher Institute - Prof. Susan Gasser - Frank Neumann, Ph.D. - Florence Hediger, Ph. D.

37

