(il

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Recent advances in image
1 processing for bio-photonics

Michael Unser

Biomedical Imaging Group
Institute of Imaging and Applied Optics
EPFL, Lausanne, Switzerland

Biomedical Photonics, Engelberg, 2005 24-Feb-05

Biomedical Imaging Group (BIG)

= Institute of Imaging and Applied Optics (I0A)
BIG: 10-15 people

= Activities
Image processing tools for the
biomedical community
Mathematical methods for image
processing
Digital optics, computational imaging

= Research

= Teaching

Research strategy

Mathematical Splines Wavelets
imaging

Medical imaging

Advanced image
processing in biology
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RESEARCH: Fundamental aspects
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Splines: a unifying perspective

Linking the discrete and the continuous .....

RESEARCH: Image processing in biology

Structural and Image analysis

cellular biology - background correction
- particle detection/ tracking
Optical and electron - shape and motility

microscopy

Computed imaging
Molecular biology

Fluorescence
Micro-arrays Multi-modal imaging

Visualization




IMAGE ANALYSIS

| = Particle tracking (D. Sage)
Collaboration with S. Gasser

= Neuron tracing (E. Meijering)
Collaboration with H. Hirling, J.-C. Sarria

BioPHOTONICS

INTERNATIONAL

Single particle tracking

= Study of yeast nuclear dynamic

Goal: analysis of the movement
of a tagged chromosomal locus
within the nucleus

GFP Labeling

Time-lapse microscopy:
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Data: Prof. S. Gasser
Dept. Molecular Biology
University of Geneva

Single particle tracking: the solution

= Problem-specific constraints
Particle signature: bright, round spot
Smooth trajectory

Movement constrained to within
the nucleus

Spot Tracker Viewer

= Algorithmic solution
Global optimization (DP) : past + future

Cost function trade-offs

= Favors bright (or spot-like) structures

= Imposes continuity constraints

= Penalizes large jumps

= Penalizes proximity to the nuclear boundary
Automatic or semi-automatic mode

= Can accept user-constraints

= Editing of solution 0 14 28 42 st
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Single particle tracking: results

= Features
Ease-of-use: 1 to 5 clicks
Automatic alignment
5 seconds to track a spot over 300
images
Tuning of the cost function

= Advantages
Reduction of work load
Reproducibility

= Extensions

3D tracking
Multiple particles

Sage et al., IEEE Trans. Image Processing, submitted

Tracing neurons...

= Semi-automatic approach: “livewire”
Optimal path between A and B (mouse clicks)
Minimization of a
cost function
Dijkstra shortest path
algorithm

B14%411 pivels, B-bi grayscale; 245K

Collaboration with H. Hirling, EPFL

MATHEMATICAL IMAGING

Meijering et al., Cytometry, 2004.

= Extended depth-of-field (B. Forster)
Collaboration with ISREC

= Super-resolution microscopy (F. Aguet)
Collaboration with N. Garin

= Super-resolution OCT (T. Blu, R.[Mangoju)
Collaboration with S. Bourquin, R. Salathé




Limited depth-of-field: the problem
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Wavelets: Haar transform revisited
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Wavelets: Haar transform revisited
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Wavelet transform for images
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Wavelet-based extended depth-of-field

= Simple, wavelet-domain EDF algorithm

Subspace
Reduction
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Multi-channel Grayscale
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Forster et al., Microscopy Research and Technique, 2004




Extended depth-of-field: results

Focal series (z-stack)
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Super-resolution particle localization

Objective:
An efficient approach for locating
particles in 3D space

Main challenge:
Axial localization

Characteristics of sub-resolution fluorescent particles
= Diffraction patterns appear in acquired images as particles move out of focus

= Image of a particle: point spread function (PSF) at the corresponding defocus
distance

Can the axial position be recovered from out-of-focus acquisitions ?

Solution
Exploit diffraction patterns by fitting acquisitions to a theoretical model

Defining an image formation model

Principal source of noise:
Statistical variation in photon arrival rate on CCD 0 g“w

+ Follows a Poisson distribution

Acquisition model:

Theoretical PSF with Poisson statistics i P P

Probability of measuring ¢ photons
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P(q(x,y. 2l)) =

q : expected photon count, proportional to theoretical PSF intensity:

q(x,y, 2n|2p) = ¢ PSF(2,y, 2n|2p)

2um

@
0.5 pum Tum 1.5um 25um

22

Position estimation

Fitting the experimental data to a theoretical model

Possible criteria:

* Least squares
+ Maximum likelihood

Optimal solution:
- lterative, based on maximum likelihood

defocus (relative to zp) [um]
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q: observed photon count (experimental)

‘Resolution’ limits

How can the maximal precision of the estimation be determined ?

Statistical tool: Cramér-Rao bound
« Theoretical lower bound on the variance of any unbiased estimator
« In short: the performance of the best estimator
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+ Depends on the theoretical PSF model, thus on acquisition parameters
« Key factor: presence of noise (high amount implies lower precision)
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CRB properties
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Out-of-focus acquisitions yield better results !!
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CRB: Beyond the theoretical aspects

Optical coherence tomography (OCT)

HutlayerSample

= Model of OCT signal
i(t) = Iy + 2Re {(h + 9)(1)}
I : constant offset

h(t) : impulse response of object
g(t) : coherence function of light source

Optimal experimental acquisition settings can be deduced
« Hypothesis: uniform distribution of particles within a specific section of specimen
- What distribution of focal positions (acquisitions) will yield the lowest CRB ?

Getocus flavo .3 ]

Example
« Interval: [10,18] pm into specimen
« 3 acquisitions (3rd at 18 pm)

Aial postion ]

Conclusions
« Higher precision can be reached from out-of-focus acquisitions

+ Optimal acquisition positions are non-trivial 2

Super-resolution OCT

Super-resolution OCT: results

Two layer experiment: T = 1.65
Sub-resolution: Ab= Az/2 dpum

Two iterfaces separated by A2/2=6.5um, PSNR = 30 6B

= Multi-layered model ([ interfaces)
K
H(w) = Zakejb“u
k=1

Parameter vector: p = (a1, -+, ax, b1, -, bK)
K
(Absorption negligible) B imodel(t; P) = Io + 2 Z arg(t — by)

k=1
= Estimation method

Pope = g min {i(8) = imoar(t:9)*}

Non-linear Least Squares (Marquardt-Levenberg)
Subspace method (direct)
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MULTI-MODALITY IMAGING AND VISUALIZATION
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30, 35 o
Peak Signal-o-Noise Ratio (d8)
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= Image registration (P. Thévenaz)
Generic problem: multi-modal and time
laps sequences

= 3D Rendering (P. Thévenaz)
High-quality, spline-based isosurfaces
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Multi-modal image registration

Thévenaz and Unser, IEEE Trans. Imag Proc, 2000

Specificities of the approach
= Criterion: mutual-information

= Cubic spline model

high quality

sub-pixel accuracy
= Multiresolution strategy
= Marquardt-Levenberg like

optimizer
Speed
Robustness
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Software distribution: Imaged pluggins
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= Software development [EMEE e [ o
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Student projects
Research
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Alignment of image sequences
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CONCLUSION

= On-going challenges for bio-imaging
Quantitative image analysis
Computed imaging: reconstruction, deconvolution, ...
3D + time data: storage, processing and analysis
Parametric imaging

= Bio-photonics and signal/image processing
Imaging software is becoming part of modern systems
Digital optics

= Making algorithms available
Plateform independence (Java)
Web, Imaged plugins

Visualization

= High-quality methods
Splines, ...

Collaboration with B. Trus, NIH, USA
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Global, integrative view of bio-imaging

Science

Biology and
Medicine

- molecular biology

ﬂ
processing

- physics - mathematics

Biochemistry
(markers)
@iﬂ)
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Image reconstruction and restoration

Biomedical image processing

Neurology and

neuro-sciences

Functional imaging, fMRI

Structural and Image analysis
cellular biology

Optical and electron
microscopy Ci

Radiology

X-ray tomography
MRI

Molecular biology Multi-modal imaging

Fluorescence
Micro-arrays

Visualization

Nuclear medicine
SPECT, PET

Cardiology

Ultrasound, image
sequences

3D reconstruction from projections

Deblurring, noise reduction
= Wavelets, correlation-averaging

Digital holography microscopy
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