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= Introduction
= Cardinal-spline formalism

= Ten+ good reasons for using B-splines
Computational
Theoretical
Conceptual
Practical

= Application examples in image processing
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INTRODUCTION

m Fundamental issue in signal/image processing
Acquisition

Linking the discrete and the continuous

Algorithm design

m Mismatch between theory and practice

Theory : Shannon’s sampling theorem

Practice: nearest neighbor, linear interpolation

m Limitations of Shannon sampling theory

Ideal lowpass filters do not exist
Incompatible with finite support signals
Gibbs oscillations

Slow decay of sinc(x)

m Basic problem

How do you interpolate a signal efficiently ?

1-3

Splines: a unifying framework

Linking the discrete and the continuous .....

lultiresolution
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Spline interpolation and biomedical imaging

Image proces:

LRELTS

Tomographic
reconstruction

Specific operation

* Filtered backprojection
« Fourier reconstruction
* Iterative techniques
3D + time

Imaging modality

Commercial CT (X-rays)
EM

PET, SPECT
Dynamic CT, SPECT, PET

* Re-sizing, scaling

Sampling grid * Polar-to-cartesian coordinates Ultrasound (endovascular)
conversion « Spiral sampling Spiral CT, MRI

* k-space sampling MRI

* Scan conversion
Visualization 2D operations

* Zooming, panning, rotation Al

* Stereo imaging

Fundus camera

* Projective mapping
* Aspect ratio, tilt
* Magnetic field distortions

« Range, topography ocT
3D operations
* Re-slicing CT, MRI, MRA
* Max. intensity projection
* Simulated X-ray projection
Surface/volume rendering
* Iso-surface ray tracing CT
« Gradient-based shading MRI
*+ Stereogram
Geometrical correction * Wide-angle lenses Endoscopy

C-Arm fluoroscopy
Dental X-rays
MRI

Registration

* Motion compensation

+ Image subtraction

* Mosaicking

« Correlation-averaging

* Patient positioning

* Retrospective comparisons
* Multi-modality imaging

* Stereotactic normalization
* Brain warping

fMRI, fundus camera

DSA

Endoscopy, fundus camera,
EM microscopy

Surgery, radiotherapy

CT/PET/MRI

Feature detection

* Contours
* Ridges
- Differential geometry

All

Contour extraction
* Snakes and active contours

MRI, Microscopy (cytology)
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CARDINAL SPLINE FORMALISM

= Distributional definition: L-splines
= Basic atoms

= Polynomial B-splines n
Pt il
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General concept of an L-spline

L{-}: differential operator (translation-invariant)
d(x) = Hle d(x;): multidimensional Dirac distribution

Definition
The continuous-domain function s(x) is a cardinal L-spline iff.

L{s}(a) =)  alklé(z — k)

kezd

= Cardinality: the knots (or spline singularities) are on the (multi-)integers
= ideal framework for signal processing

. " " . . . N
= Generalization: includes polynomial splines as particular case (L = 1)

Example: piecewise-constant splines

= Spline-defining operators
d

Continuous-domain derivative: D:d— — jw
X

Discrete derivative: A {} «— 1—e ¢

= Piecewise-constant or D-spline

s(z) =) s[k]BY(z — k)

keZ

A_;,_S(k')

D{s}(x) = Y AR o(x — k)

keZ

= B-spline function

- A@-aree e




Existence of a local, shift-invariant basis?

® Space of cardinal L-splines

Vi, = {s(w) L{s}H(x) = > alk]é(x - k)} N Ly (RY)

keczd

® Generalized B-spline representation

A “localized” function ¢(x) € V1, is called generalized B-spline if it gen-
erates a Riesz basis of V1,; i.e., iff. there exists (A > 0, B < o) s.t.

A leleyzn) < || Shens clblol@ — k)| < B-llelleany
Y

VL=< s(x) = Z clklo(x — k) : x € RY, ¢ € £5(Z%)

kezd \

: L discrete signal
continuous-domain signal

(B-spline coefficients)
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Polynomial B-splines

dn+i
m B-spline of degree n ' L= dantt
Bi(x) = B9 x5y * - x B (2)
) (n+f§times ’
" % ; ; . > .
ﬂi(m) - { (1): ofhtear\[:/)igle).

m Key properties
= Riesz basis generator for the cardinal polynomial splines

= Shortest polynomial spline of degree n

m Symmetric B-spline
5@) = 9 (4 15)
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B-spline representation of images

m Symmetric, tensor-product B-splines
[3”(3317"' a$d) _ ﬁn(xl) N @”(:Cd) :: e
gdn-+d ’

L =
ozt ot

= Multidimensional spline function

s(ar, - xa)= > ek kd B2y — K, 2a— ka)
(k1,---kq)€Z4 a\\
continuous-space image image array Compactly supported
(B-spline coefficients) basis functions

TEN REASONS FOR USING SPLINES

= Mathematical elegance

Fast algorithms
= Approximation theory
= Link with theory




1. B(eautiful) basis functions

m Polynomial B-splines (centered)

. B An—i—lxn _ .
B (z) = (nTJ = (8% 5" 1) ()

m Attractive properties for image processing
= Compact support: shortest polynomial spline of degree n
= Symmetry
= Positivity
= Controlled smoothness: Holder-continuous of order n

= Bell-shaped (optimal space-frequency localization)
g™ (z) — ! exp( _xQ) with o, = |/ %L
V2o, 202 " 12

Reference: (Schoenberg, 1946)

-2 -1 1 2
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2. Fast digital-filtering algorithms

All classical spline interpolation and approximation problems
can be solved efficiently using recursive digital filtering

m Interpolation problem

Given the signal samples f[k], find the B-spline coefficients c[k] such that

F(@)e=re = fK] = ) clki]o(k — k1)

k.,€ZP

= Inverse filtering solution

flk] clk] = (hime * F)k] with  Hin(2) = !

1
B(z)  Ype plk)z*

— Digital filter ——

Note: ¢(x) separable = hin[k] separable

Reference: B-spline signal processing (Unser, IEEE-SP 1993)
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Example: cubic-spline interpolation

m Cubic B-spline

4/6
F-sklP@-lal), 0<[zl<1 e /6
p(z) = B2(x) = ¢ F@2—|z))% 1< |z <2
0, otherwise ° | | T .
. , z+4+ 271
m Discrete B-spline kernel: B(z) = —

m Interpolation filter

6 (1-a)? 2 1—a\
- hint [k] = .
z4+4+2z71 (1—-az)(l—azl) - tlA] <1+o¢>a

(symmetric exponential)
a=—-2++3=-0.171573 y

Cascade of first-order recursive filters

1 1
1—az! 1—az
causal anti-causal

3. Simple manipulations

The polynomial spline family is closed with respect to differentiation

m Derivative operator

T 1
Df(x) = G

m Finite-difference operator (centered)

Af() = fx+3) - flz - 3)

m Derivative of a B-spline (exact)

D™ g™ (x) = A™ GEE (1)

. Reduction of degree
Discrete operator

Reference: (Schoenberg, 1946) 1-16




4. Link with system theory: C-to-D converters

Exponential B-splines = the mathematical translators between
continuous-time and discrete-time LS| system theories

Continuous domain Discrete domain
- differential equations - difference equations
- circuits, analog filters - digital filters
- Laplace transform: 76r0S - z-transform:
M
m=1\5 T 1
Ho(s) = Lnzma s Tim) Hp(z) = —5
anl(s — Q) Hn:1(z —Z)
mapping: z, = e*»
. . _1 [ Hc(s) }
Associated B-spline: 35(t) = £7* { t
Reference: “Think analog, act digital” (Unser, IEEE-SP 2006) 1-17
Example: 1st order system
Continuous-time impulse response
B Lt ) e =0 L 1
ho(t) = 1,(1) - et = { 0. =0 He(s) = ——

- 1st-order exponential B-spline

Discrete-time counterpart

holk] = ho(k) < Hp(z) = —

z —e¥

Discrete-time signal

+0oo e
ho(t) =14(t) - e => e Bo(t — k) = > hp[k] Balt — k)
/ k=0 kEZ /
Continuous-time signal Compactly-supported basis functions
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5. Best cost-performance tradeoff

Polynomial B-splines have

- maximum order of approximation for a minimum support (MOMS)
- a low asymptotic approximation constant.

This explains their superior performance in imaging applications.

m Approximation of a function at scale a ’XW\
Valp) = {sa(a:)=Zc[k]g0 <§_k) :CE€2} .

I T ! ! 1
keZ ¢

2a 3a 4a

Definition: A generating function ¢ has order of approximation - iff.

Vfews, arg min |[f —sallz, < Cy-a” If P,

a

m (3"(x) has order of approximation v = n + 1 and C., jin = V(gi()i"’)

Reference: (Strang-Fix, 1973; Blu-U., IEEE-SP 1999) 1-19

Interpolation benchmark

Cumulative rotation experiment: the best algorithm wins !

Bilinear Windowed-sinc Cubic spline
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High-quality image interpolation

35 4
g Bspline(6)
&~
é 30 Bspline(5)
a Bspline(4)
=
5 Bspline(3)
g
£
< Bspline(2)
& 25 Schaum(2) [1993] Meijering(7) [1999]
=
n Keys [1981] Meijering(5) [1999]
g Schaum(3) [1993]
g
8
< Dodgson [1997]
v
]
5 20
& Linear
]
B
-

Sinc Hamming(4)
Nearest-neighbor
German [1997]
15 4
T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Execution time (s rol'l)

Thévenaz et al., Handbook of Medical Image Processing, 2000
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6. Link with wavelet theory

Polynomial B-splines have remarkable dilation properties.
They play a fundamental role in wavelet theory.

m Generalized Lego™/Duplo™ relation

) -n"
& o B (x/2) = B (x) + 85 (x — 1)

B-spline dilation property: ! (z/2) = Z hy [k|BY (v — k)

kEZ
n+1
1 1 1
Binomial filter: HJ(z) = o > (n;— ) zF = on (1+ 371)71+1
k=0
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B-spline factorization theorem

Theorem: A valid scaling function ¢(x) has order of approximation  iff.

o(z) = (8% * ¢o) (z)

where 3¢ with o = v — 1: regular, B-spline part

o € S’ irregular, distributional part

/ N

/f’ \\ / \
i/ \\\f . - / \; *

= Refinement filter: general case

(U.-Blu, IEEE-SP, 2003)
|

I

1+271\" . -
Hz)=(—] - Q2) with |Q(e?¥)] < 400
2 ——
distributional part
spline part
1-23
Splines: the key to wavelet theory
Sobolev smoothness
0°p € Lo
U V=S
B-spline factorization: Approximation order: Multi-scale differentiator
—1l 2
=090 | S~ Pufllz. = 0(@) | 2| d(w) o< (—jw)", w — 0
U, 'ﬂ generalcase: N <y < N +1
compact support: v = N + 1 (Strang-Fix)
Polynomial reproduction
degree: N = [y — 1]
Vanishing moments:
/m"z/;(x)d:): =0,n=0,---,N
1-24

Reference: Wavelet theory demystified (Unser-Blu, IEEE-SP, 2003)




7. Link with regularization theory

Spline estimators are optimal from a variational point of view.

- SmOOthing'Sp"ne estimator Continuous-domain estimate:

Discrete, noisy input: s(x) — c[k:]ﬁ”(:z: _ k)
flk] = $ret(k) + noise —, Smoothing ___ keZZ
algorithm

Theorem: The solution (among all functions) of the smoothing-spline problem

Isrfi?{k%mk] — (k)P + A /

— 00

+oo

|Dms(aj)|2dx}

is a cardinal spline of degree 2m — 1. In addition, its coefficients c[k] = hy * f[k]
can be obtained by suitable digital filtering of the input samples f[k].

References: theory (Schoenberg, 1964), recursive filtering algorithm (Unser, 1993)
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8. Link with Shannon’s sampling theory

The Hilbert-space formulation of polynomial spline approximation
provides an extension of Shannon’s classical sampling theorem.

m Polynomial spline interpolator

1 it
2
]
) sin(w/2)\" ™! ,
pre(@) o dnw) = Hy (%)
(=)
B (w)
. T 2 3 47
m Asymptotic property

The cardinal-spline interpolators converge to the sinc interpolator (ideal filter) as the
degree goes to infinity:

. n . . an w .
nhl& i (z) = sinc(x), nILrI;O o (w) = rect (%) (in all L,-norms)

References: (Schoenberg, 1973; Unser, Proc. IEEE, 2000) 1-97

9. Link with stochastic processes

Splines are in direct correspondence with stochastic processes
(stationary or fractals) that are solution of the same partial
differential equation, but with a random driving term.
Defining operator equation: L{s(-)}(x) = r(x)
m Specific driving terms
« r(x) = (x) = s(x) =L '{d}(x) : Green function

= r(x) = Z alk]é(x — k) = s(x) : Cardinal L-spline
kezd

= 7(x): white Gaussian noise = s(x): generalized stochastic process

A non-empty null space of L., boundary conditions

References: stationary proc. (Unser, IEEE-SP 2006), fractals (Blu, IEEE-SP 2007) 108




Example: fBm and polyharmonic splines

Defining operator: L =A% 75 |w|]

White noise fractional Brownian field
Az ‘

Whitening
(fractional Laplacian)

A~ 73

fractional integrator
(appropriate boundary conditions)

Non-stationary !

m Deterministic counterpart

Train of Dirac impulses: Polyharmonic spline (Rabut, 1992)
> alklé(z — k) A? s@) =Y clklp, (k)
kezd kezd
1-29
10. Link with estimation theory
Smoothing splines are minimum-mean-square-error estimators
(e.g., hybrid Wiener filters) for a corresponding class
of stochastic processes (stationary and fractal)
= Measurement model:  f[k] = s(x)|,_, + n[k]
m s(x): realization of a Gaussian stationary or fractal (fBm) process s.t.
E[Ls(xy1) - Ls(x2)] = 02 §(x1 — x2) (whitening operator L)
= n[k]: white Gaussian noise with variance o>
m MMSE spline estimator of signal s(x): or-1(z): L*L-spline generator
Els(z)|f] = Z (ha = f)[k] prov(z — k) hylkl: smoothing spline filter

kezd 2, 9 o
X = 0°/og: regularization factor

References: stationary proc. (Unser, IEEE-SP 2006), fBm (Blu, IEEE-SP 2007)




... ADDITIONAL ONES ...

= Attractive Hilbert-space framework for
continuous/discrete signal and image processing

= Splines are “m times” better than Daubechies
wavelets

= Polynomial splines can be extended to fractional
(and even complex) exponents

= Scale invariance and link with fractals (polynomial
and fractional splines)

= Generalized (non-stationary) wavelet bases
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SPLINES: application examples

= Sampling and interpolation
Interpolation, re-sampling, grid conversion
Image reconstruction
Geometric correction

m Feature extraction

Contours, ridges
Differential geometry
Image pyramids
Shape and active contour models

= |mage matching

Stereo ) Q
Image registration =~

(multimodal, rigid body or elastic)
Motion analysis

(optical flow) m
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Spline approximation: LS resizing

Approximation at arbitrary scales: differential approach using splines

a=1—10

Minimum error approximation (orthogonal projection)

fa(z) = argmin | f(z) — > calklB"(@/a = k)|,

keZ

1-33

Application: image resizing

m Resizing algorithm
Interpolation
Linear splines

scaling= 70%

SNR=22.94 dB




Application: image resizing (LS)

= Resizing algorithm

Orthogonal

projector

Linear splines

scaling= 70%

SNR=28.359 dB

+5.419 dB

(Munoz et al., IEEE Trans. Imag. Proc, 2001)

Cubic-spline image differentials

m Convolution-based implementation

1

4

f(k D) clk, 1]
@ 2D filtering Differential
\ (separable) mask
orta
JAVA code available: o(w,y)
e 0zPOy4 _
http://bigwww.epfl.ch/ z=k,y
= Hessian masks
1 -2 1 1 0 -1
2 1 0? 1
226 4—84] 9edy 22 0 01
1 -2 1 | -1 0 1
[ 1 4 1
02 1
o 6| 2 S _i]

opta
oxPOyd

= Laplacian
NS .
or?  0y2 3 -
|1 11
» Gradient masks
[—1 0 1]
d 1
a. ﬁ —4 0 4
| -1 0 1|
o [
oy 6-2
Y 1 1

f(k, 1)

|
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Elastic registration problem

Find a diffeomorphism (warping): « — g(x) suchthat fs( g(x) ) = fr(x)

= fs(x): source image o ¥ 4 |

= fr(x): target image (or reference)

» g(x) = g(x|®): parametric deformation map

m Problem constraints

Similarity measure to compare images

Smooth deformation field (regularization)

= Parametric model (for better efficiency)

Optional specification of landmarks: :z:é") — w(T")

1-37

Cubic-spline deformation map

Transformed image: fs (g(x|®))

g2

Deformation map:  g(x|®;,) = <91Eg> = <25:D g (% a k)

keZ?

= Parametric model (control points)
O = (- ,clk, ], ealk, 1], )

= Resolution controlled by mesh size h

= Smooth deformation (cubic splines)

= Rich variety of spatial mappings,
including rigid body, affine, etc.




Registration as an optimization problem

fS(w) - fS (g(w|@opt)) where ®opt = arg m@i)n {Ereg(f87 fTa @)}

Ereg(fS7 fT7 @) — Eimage(fS’ fTa 9) + Erough((-)) + Elandmark((a)

= Least-squares similarity criterion

Elmage fS?fTa ZIfS k|® fT[k]|2

= Vector-spline roughness penalty

2
Frousn(®) = Adie ||V div g(az|®)H + Aot ||V 0t g1} 1o

Lo (R2)

= Landmark contraints: :13(3 R

2
Elandmark N Z Hg )|@ (n)
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UnwarpdJ: Implementation details

= Continuous image representation
- cubic splines

s Consistent implementation
- analytical derivatives
- multilevel B-spline discretization

= Quasi-Newton optimization

- 1 i i Humber: 72 |
exact gradient of criterion e e s

. . FixAenot: 32x32
= Full multiresolution strategy E: 23.055

1 1

|
|

- coarse-to-fine on images \ \\ ‘\\ \ |
- coarse-to-fine on deformation

— 1 [ |
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Drosophila Melanogaster embryos

Three genes, three fluorescent dyes
One control gene, two variable genes
Confocal scanning microscope
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Drosophila Melanogaster embryos

Unregistered
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Drosophila Melanogaster embryos

Registered

Difference Deformation field
S
PR S
R E R AR
L
R RR AR AR AN

CONCLUSION

= B-splines are attractive computationally
Simple to manipulate; smooth and well-behaved
Fast recursive filtering algorithms (O(1) per sample)
Multiresolution properties (pyramid, multigrid, wavelets)

= Splines: a unifying conceptual framework
Approximation theory
Link with wavelet theory
Signals and systems, sampling theory
Stochastic processes; regularization and estimation theories

= Practical Hilbert-space framework (SP counterpart of FE) for
continuous/discrete image processing
“Think analog, act digital”
Toolbox: digital filters, convolution operators

Flexibility: piecewise-constant to bandlimited
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