Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Steerable Wavelets
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Steerable Wavelet Frames in L2(ℝD)

M. Unser

Proceedings of the International Conference on Wavelets and Applications (ICWA'09), Saint-Petersburg, Russia, June 14-20, 2009, pp. 61-62.


We introduce an Nth-order extension of the Riesz transform in d dimensions. We prove that this generalized transform has the following remarkable properties: shift-invariance, scale-invariance, inner- product preservation, and steerability. The pleasing consequence is that the transform maps any primary wavelet frame (or basis) of L2(ℝd) into another "steerable" wavelet frame, while preserving the frame bounds. Concretely, this means we can design reversible multi-scale decompositions in which the analysis wavelets (feature detectors) can be spatially rotated in any direction via a suitable linear combination of wavelet coefficients. The concept provides a rigorous functional counterpart to Simoncelli's steerable pyramid whose construction was entirely based on digital filter design. The proposed mechanism allows for the specification of wavelets with any order of steerability in any number of dimensions; it also yields a perfect reconstruction filterbank algorithm. We illustrate the method using a Laplacian-like (or Mexican hat) polyharmonic spline wavelet transform as our primary frame. We display new wavelets that replicate the behavior of the Nth-order partial derivatives of an isotropic Gaussian kernel.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser0905.html,
AUTHOR="Unser, M.",
TITLE="Steerable Wavelet Frames in $L_{2}({\mathbb{R}}^{D})$",
BOOKTITLE="International Conference on Wavelets and Applications
	({ICWA'09})",
YEAR="2009",
editor="",
volume="",
series="",
pages="61--62",
address="Saint-Petersburg, Russia",
month="June 14-20,",
organization="",
publisher="",
note="")
© 2009 EIMI. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from EIMI. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved