Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Sparse Processes
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

An Introduction to Sparse Stochastic Processes

M. Unser

Tutorial, Thirty-Ninth IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'14), Firenze, Italian Republic, May 4-9, 2014.


Sparse stochastic processes are continuous-domain processes that admit a parsimonious representation in some matched wavelet-like basis. Such models are relevant for image compression, compressed sensing, and, more generally, for the derivation of statistical algorithms for solving ill-posed inverse problems.

This tutorial provides an introduction to the extended family of sparse processes that are specified by a generic (non-Gaussian) innovation model or, equivalently, as solutions of linear stochastic differential equations driven by white Lévy noise. We provide a complete functional characterization of these processes and highlight some of their properties. The two leading threads that underlie the exposition are:

  1. the statistical property of infinite divisibility, which induces two distinct types of behavior—Gaussian vs. sparse—at the exclusion of any other;
  2. the structural link between linear stochastic processes and splines.

The formalism lends itself to the derivation of the transform-domain statistics of these processes and to the identification of "optimal" (ICA-like) representations. We also show that these models are applicable to the derivation of statistical algorithms for solving ill-posed inverse problems, including compressed sensing. The proposed formulation leads to a reinterpretation of popular sparsity-promoting processing schemes—such as total-variation denoising, LASSO, and wavelet shrinkage—as MAP estimators for specific types of sparse processes, but it also suggests alternative Bayesian recovery procedures that minimize the estimation error.

The lecture notes for the tutorial are available on the web at http://www.sparseprocesses.org/

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser1409.html,
AUTHOR="Unser, M.",
TITLE="An Introduction to Sparse Stochastic Processes",
BOOKTITLE="Thirty-Ninth {IEEE} International Conference on Acoustics,
	Speech, and Signal Processing ({ICASSP'14})",
YEAR="2014",
editor="",
volume="",
series="",
pages="",
address="Firenze, Italian Republic",
month="May 4-9,",
organization="",
publisher="",
note="Tutorial")
© 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved