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Representer Theorems for Sparsity-Promoting
{1 Regularization

Michael Unser, Fellow, IEEE, Julien Fageot, and Harshit Gupta

Abstract— We present a theoretical analysis and comparison
of the effect of £; versus {; regularization for the resolution of
ill-posed linear inverse and/or compressed sensing problems. Qur
formulation covers the most general setting where the solution is
specified as the minimizer of a convex cost functional. We derive
a series of representer theorems that give the generic form of the
solution depending on the type of regularization. We start with
the analysis of the problem in finite dimensions and then extend
our results to the infinite-dimensional spaces £;(Z) and £1(Z).
We also consider the use of linear transformations in the form of
dictionaries or regularization operators. In particular, we show
that the £, solution is forced to live in a predefined subspace that
is intrinsically smooth and tied to the measurement operator.
The £; solution, on the other hand, is formed by adaptively
selecting a subset of atoms in a dictionary that is specified by
the regularization operator. Beside the proof that £; solutions
are intrinsically sparse, the main outcome of our investigation
is that the use of £; regularization is much more favorable for
injecting prior knowledge: it results in a functional form that is
independent of the system matrix, while this is not so in the £,
scenario.

Index Terms— Sparsity, compressed sensing, linear inverse
problems, regularization, £;-norm minimization, total variation.

I. INTRODUCTION

HE main advantage of using £, (or Tikhonov) regular-
ization for the resolution of ill-posed inverse problems
is that it yields linear reconstruction algorithms; it is also
backed by an elegant and solid mathematical theory [1]-[3].
However, it is not necessarily the method of choice any-
more, except for routine reconstruction tasks. During the past
decade, the research community has focused its efforts on
more sophisticated iterative recovery schemes that exploit a
remarkable property of signals called sparsity [4], [5]. The
concept is central to the theory of compressed sensing [6], [7]
and is driving the development of modern reconstruction
algorithms [8]-[10].
There are essentially two strategies for achieving a
sparse signal recovery. The first is the synthesis formu-
lation where one attempts to reconstruct a signal from a
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small subset of atoms within a large dictionary of basis
elements [5], [11], [12]. The sparsity constraint is usually
enforced by minimizing the £;-norm of the expansion coeffi-
cients. The second strategy is the analysis formulation where
the solution is constrained by minimizing a sparsity-promoting
functional such as the total-variation semi-norm [8], [13]-[16]
or some higher-order extension [17]-[20]. This latter strat-
egy actually goes back much further since it falls within
the general framework of regularization theory [21]-[23].
It also has the advantage of being compatible with statisti-
cal inference. For instance, one may specify a maximum a
posteriori estimator by selecting a regularization functional
(or Gibbs energy) that corresponds to the log-likelihood of a
given probability model, including Markov random fields [24]
or sparse stochastic processes [25]. It is well known that the
synthesis and analysis formulations are equivalent for signal
denoising when the sparsifying transform (or dictionary) is
orthogonal and when the regularization functional is chosen
to be the £1-norm of the expansion coefficients [26].

While the switch from an ¢, to an {¢; regulariza-
tion necessitates the deployment of more sophisticated
algorithms [8], [27], [28], there is increasing evidence that
it results in higher-quality signal reconstructions, especially
in the more challenging cases (compressed sensing) when
there are less measurements than unknowns. The theory of
compressed sensing also provides some guarantees of recovery
for K-sparse signals under strict assumptions on the system
matrix [6], [29], [30].

Our objective in this paper is to characterize and compare
the effect of the two primary types of regularization on the
solution of general convex optimization problems involving
real-valued linear measurements. While the sparsity inducing
property of the £1-norm is well documented and reasonably
well understood by practitioners, we are only aware of a
few mathematical results that make this explicit with the
view of solving underdetermined systems of linear equations
(e.g. [41, [31], [32]), typically under the assumption that the
{1-minimizer is unique.

We have chosen to present our findings in the form
of a series of representer theorems which go by pairs
(€2 vs. €1 regularization) with all other aspects of the
problem—i.e., the choice of the (convex) data term and
the regularization operator—being the same. A pleas-
ing outcome is that our results reinforce the connection
between the synthesis and analysis formulations of signal
recovery since our {; representer theorems can be inter-
preted as a ‘“synthesis” solution to a class of optimiza-
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tion problems that is more typical of the regularization
framework.

The paper is organized as follows. The scene is set in
Section II with a brief discussion and comparison of the
two primary schemes for signal recovery: the linear Tikhonov
estimator (with p = 2) versus the non-linear basis pursuit
estimator (with p = 1), where the only change is in the
exponent of the regularization. We also document the property
that one is able to control the sparsity of the latter estimator
by varying the regularization parameter A. In Section III,
we focus on the finite-dimensional scenario (x € RV) and
present our two main representer theorems that cover a broad
family of convex optimization problems. As example of appli-
cation, we prove that the extreme points of a total-variation
optimization problem are necessarily piecewice-constant.
In Section IV, we generalize our result to the infinite-
dimensional setting (x € ¢{(Z)). The formulation becomes
more technical as we need to invoke the weaksx topology to
specify the full solution set of the generic {;-norm minimiza-
tion problem. We also consider the scenario where the null
space of the regularization operator L is non-trivial, which
requires some more sophisticated developments (Theorem 19).
The bottom line is that the generic form of the solution remains
unchanged, while the sparsifying effect of ¢-regularization
is even more dramatic: the minimization process results into
the collapsing of an infinity of degrees of freedom into a
small finite number that is upper bounded by the number of
measurements.

II. MOTIVATION: £ VERSUS {1 REGULARIZATION

In a linear inverse problem, the task is to recover some
unknown signal x € RY from a noisy set of linear measure-
ments y = (y1, ..., yy) € RM such that

ym:(hmax>+n[m]a mzl"")M (1)

where n[m] is some unknown noise component that is typi-
cally assumed to be i.i.d. Gaussian. The measurement model is
specified by the real-valued system matrix H = [hy - - - hy 17
of size M x N. Our interest here is in the ill-posed scenario
where M is (much) smaller than N (compressed sensing)
or when the system matrix is poorly conditioned and not
invertible. This ill-posedness is dealt with in practice by intro-
ducing some form of regularization. Since our objective here
is to compare the regularizing effect of {» vs. {1 norms, we
shall start with the simplest scenario where the regularization
is imposed directly upon x. The more general case where
the regularization is enforced in some transformed domain is
addressed in the second part of Section III.

A. Simple Regularized Least-Squares Estimator

The most basic penalized least-squares (or Tikhonov) esti-
mator of the signal x from the measurements y is specified by

xLs = arg min [y — Hx|3 + 2[x]3, ©)
xeRN
where 4 > 0 is a hyper parameter that controls the strength
of the regularization. The standard form of the solution is

xis = (H'H + 2Iy)'H'y,
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where Iy is the N x N identity matrix. This translates into
a linear algorithm that can also be interpreted as a Wiener
filter. We shall now invoke a lesser-known result that has
some interesting conceptual implications. The proof is given
in Appendix A for sake of completeness.

Proposition 1: For any matrix H of size M x N and
/€ R, we have the identity

HH + Ay)"HT = HTHHT + A1)~
This allows us to rewrite the least-squares solution as

M
XLS = HTa = Z amhy, (3)

m=1

where a = (HH” + AI;)"'y. We have thereby revealed the
property that xp.s € span{hm}ﬁl”:l. Moreover, if we let 1 — 0,
then the solution converges to xg = H'y where H" is the
Moore-Penrose generalized inverse of H [2, Section 1.5.2].
By definition, HT solves the classical least-squares approxi-
mation problem miny ||y — Hx||% and extracts the solution X
that has the minimum norm. If H”H is of full rank, then
H* = (H"H)"'H”, which is the classical pseudo-inverse
of H. Otherwise, which is the case of interest here, it returns
the minimum-norm solution that is in the span of H” as well.

While this simple linear reconstruction scheme works rea-
sonably well when M > N, the situation is much less
favorable for smaller M because the solution is forced to live
in a space that is specified by the system matrix H, and hence
strongly problem-dependent.

B. Least-Squares Estimator With €1 Penalty

An alternative that has become increasingly popular in
recent years is to substitute the squared {>-norm penalty
by the ¢j-norm. This yields the so-called penalized basis
pursuit (PBP) estimator

Xparse = arg min ||y — Hx|[3 + 2|1, (4)
xeRN

where 4 > 0 is a regularization parameter with the same
role as before. To get some insight on the effect of the
{1 regularization, we now look at the extreme scenario where
there is a single measurement:

- T2
min |y; —hy x| 4 A|Ix]|;
xeRN

For A above some critical threshold, we get the trivial solution
x = 0. Otherwise, we obtain a “sparse” solution of the
form

Xsparse = d1€p,;

where {e,,},11\/:1 is the canonical basis of RV and n; the index

of the component of h; that has the largest magnitude. This
has to be compared with the corresponding ¢ solution (3)
which simplifies to

xLs = ajhy

with a; = y/(thhl + A). The contrast is striking: On the
one hand, we have a solution that is completely sparse with
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Fig. 1. Sparsity index K = [[Xsparsello of the solution of (4) as a function of
the regularization parameter /4 for three different kinds of system matrices with
M = 30 and N = 120. The simulated measurement model is described by
(1) where x is i.i.d. (innovation model) with two distinct statistical models:
(a) Bernoulli-Gauss with an average sparsity index of 8, (b) Gaussian and
therefore, non-sparse. In all the simulations, the standard deviations of the
signal is oy = 3, the input SNR is 35 dB and all the matrices are row
normalized. The rows of the system matrix H are constructed as follows. (i)
Conv: random shifts of a symmetric exponential e~Iml; (ii) DCT: random
rows of a DCT matrix; (iii) CS: Gaussian i.i.d. with ¢ = 1. In all the cases,
K reaches M =30 as 1 — 0.

[Xsparsello = 1, while, on the other, we obtain a blurred ren-
dition whose parametric form is dictated by the measurement
vector hj. As it turns out, the contrasting behavior that has
been identified for this very simple scenario is generic and
transposable to a much broader class of optimization problems.

The other property that is well documented in the litera-
ture is the sparsifying effect of the regularization parameter
A in (4). When 2 is very small and close to 0, the solution
will typically have a sparsity index |[Xsparsello = M where
M is the number of measurements. In order to promote sparser
solutions, it then suffices to increase 4, as illustrated in Fig. 1.
To show that this mechanism is universal and unrelated to
the choice of the system matrix, we considered three rep-
resentative scenario : (i) symmetric exponential convolution
followed by a non-uniform sampling (Conv), (ii) random
sampling of the discrete cosine transform (DCT) of the
signal, and (iii) compressed sensing (CS) involving a system
matrix whose components are i.i.d. Gaussian. The simulated
measurements were generated according to (1) where n[m]
is AWG noise. The reconstruction was then performed using
FISTA [27] for unconstrained ¢; minimization. To verify
that the control mechanism is independent of the suitability
of the underlying signal model, we considered two extreme
configurations. In the first set of simulations summarized
in Fig. la, the ground-truth signal x is truly sparse with its

5169

majority of coefficients being zero—specifically, the compo-
nents of x are i.i.d. with a Bernoulli-Gauss distribution. For the
second set of experiments shown in Fig. 1b, we switched to a
“non-sparse” model by taking x to be i.i.d. Gaussian. While
there are differences in the shape of the graphs, the main point
is that in all cases, K = ||Xsparsell0 decreases monotonically
with 4 while its maximum value is bounded by M.

Besides the standard PBP form (4) favored by practitioners,
there are two other possible formulations of the recovery
problem. The first is the LASSO (Least Absolute Shrinkage
and Selection Operator) defined as (see [26])

arg min [ly — Hx|5 s. t xlh <7, )
xeRN

while the second is the (quadratically) constrained basis
pursuit (CBP) estimator

arg min [[x]|; s. t. |y — Hx|3 < o. (6)
xeRN

The key property for our purpose is that for any value of
J € RT in (4), it is possible to find some corresponding
7 =1(4) > 0and 0 = g(4) > 0 (and vice versa) so that
the PBP, LASSO, CBP problems are rigorously equivalent
(see [32, Proposition 3.2, p 64]). The argument is that the
minimizer of (6) (resp., (5)) saturates the inequality, which
allows us to interpret (4) as the unconstrained form of the same
minimization problem with Lagrange multiplier 2. The optimal
tajectory (7(4), o (1)) that is parametrized by 4 is called the
Pareto curve [33]. The same equivalence obviously also holds
for p = 2. While the constrained version of the problem (6)
with ¢ fixed is typically harder to solve numerically than (4),
it is actually the form that lends itself best to a mathematical
analysis, as we shall see next.

III. FINITE DIMENSIONAL ANALYSIS

In order to derive the general form of the solution of linear
inverse problems with ¢, versus ¢ regularization constraints,
we shall first enlarge the class of problems of interest by
considering some arbitrary convex constraints on the so-called
data term which involves the measurements y. While this has
the advantage of providing more general results, it has the
even more remarkable effect of simplifying the mathematical
derivations because it puts the problem in an abstract perspec-
tive that is more suitable for functional analysis.

A. Preliminaries

Let us start with a few definitions where X stands for
an arbitrary (finite or infinite-dimensional) topological vector
space. In this section, X' = RV,

Definition 2: A subset C of a vector space X is convex if
z=(@x+ (1 —1)y)eC, forany x,y € C and ¢ € [0, 1]; that
is, if all the points that lie on the line connecting x to y are
also included in C.

Definition 3 (Projection on a Closed Convex Set): Let X
be a vector space equipped with some norm || - ||. Then, the
projection set of z on the closed convex set U C X is

argmi;} lx —zll ={xo € U : llxo — zll < llx —zll, Vx e U}.
x€
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When the projection set reduces to a single point xg, then xg is
called the projection of z on U/ and we write

Xo = argmin ||x — z][. (7
xeld

To make the connection with the signal recovery formu-
lations of Section II, we define the data-dependent closed
convex set

Uy:o) = {x e R : |y — Hx|3 < o}

where ¢ is an adjustable control parameter. Hence, the classi-
cal projection problem (7) with z = 0 and U = U(y; o) yields
the constrained form—that is, the CBP estimator (6)—of our
initial signal recovery problem.

A potential difficulty when dealing with general convex
optimization problems is that not all such problems have
unique solutions. It is possible, however, to give a complete
description of the solution set in terms of its extreme points.

Definition 4 (Extreme Point): Let E be a convex subset of
some vector space /X'. An extreme point of E is a point x € E
that does not lie in any open line segment joining two distinct
points of E.

The extreme points of a convex optimization problem are
very special in that they lie on the frontier of the convex solu-
tion set which is then given by their convex hull. Obviously,
the problem has a unique solution if and only if it has a single
extreme point, as is generally the case with the £-norm.

B. Finite-Dimensional Representer Theorems

Having set the context, we now proceed with the presen-
tation of representer theorems for a broad family of convex
optimization problems in relation to the type of regularization.

Theorem 5 (Convex Problem With €, Minimization): Let
H: RV > RM . x > Hx with M < N be a linear
measurement operator and C be a closed convex subset of RY
such that its preimage in RV, &/ = H!(C) = {x € RV :
Hx € C}, is nonempty (feasibility hypothesis). Then,

VY = arg min ||x||% st. Hx e C (8)
xeRN

has a unique extreme point of the form

M
xis = Y anh, =H a, 9)

m=1
Proof: First, we observe that convexity (resp., closedness)
is preserved through linear (resp., continuous) transformations
so that the preimage U of C is guaranteed to be closed
convex as well. In view of Definition 3, the solution is thereby
given by the projection of the origin z = 0 onto the closed
convex set U, which is known to be nonempty, because of
the feasibility hypothesis. Our claim of unicity then follows
from Hilbert’s famous projection theorem for convex sets
which states that the projection on a convex set in a Hilbert
space always exists and reduces to a single point [34]. The
Hilbert space here is RV equipped with the inner product

(x1,Xx2) = xlsz.

Let xg = arg miny¢z ||x|| denote the unique solution of (8)
and yo = Hxgp be the image of that point through the
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measurement operator. Because the linear map xo — yo is
consistent (i.e., yo € C) and the projection has minimum norm,
the operation is reversible with xo = HTyy where HT is the
Moore-Penrose generalized inverse of H whose range is in the
span of H” (see brief discussion of the property of this inverse
in Section II-A). In other words, there exists a unique a € RN
such that x; s = xo = H'a = HY(HH  a). [

Let us note that the result in Theorem 5 is consistent
with the elementary analysis of the Tikhonov estimator
in Section II. Remarkably, the generic form of the solution
remains valid for the complete class of convex optimization
problems involving the same linear measurement model and
the same quadratic regularization functional ||x||%. The catch,
of course, is that the general solution map is no longer linear.
In other words, we should view Theorem 5 (as well as all
subsequent representer theorems) as an existence/discretization
result, meaning that it is still necessary to deploy some iterative
algorithm (such a steepest-descent method) to actually find the
optimal expansion vector a.

We now present the ¢ counterpart of Theorem 5. The
statement of the problem is almost identically except for the
fact that there can now be multiple extreme points.

Theorem 6 (Convex Problem With €1 Minimization): Let
H: RV - RM : x > Hx with M < N be a linear
measurement operator and C is a closed convex subset of RY
such that its preimage in RY, // = H™!'(C) = {x e R : Hx ¢
C}, is nonempty (feasibility hypothesis). Then,

V =arg min ||x|; s.t. HxeC
xeRN

is a nonempty, convex, compact subset of RV with extreme
points Xgparse Of the form

K
Xsparse = E A€y,
k=1

with K < M, {e,,},ll\;1 the canonical basis of RN, n; €
{1,...,N}fork=1,...,K, and |Xsparsell1 = 215:1 lak].

Proof:  Since C is convex (resp., closed) and H is
linear (resp., continuous), the set « = H™'(C) is convex
(resp., closed) as well. Therefore, I/ is a nonempty, convex,
and closed subset of RV,

The function |x||; is continuous from RY — R*, and
therefore admits a minimum (not necessarily unique) over any
closed set, including ¢/, which ensures that ) is nonempty.
Therefore, let oo = mingcy/||x||; and B be the closed ball of
radius a for the £1-norm; that it, B = {x € RV, |x|l; < a}.
Then, the set V = U N B is convex and compact, as the
intersection of a convex closed set with a convex compact
set. Ultimately, this translates into ) being nonempty, convex,
and compact.

This allows us to invoke the Krein-Milman theorem
(see [35, p. 75]), which tells us that a convex compact set,
such as V), is the closed convex hull of its extreme points.

Let us now consider an extreme point X = (x1,...,Xy)
of V whose number of non-zero entries is denoted by K,
with a priori K € {0,...,N}. We want to prove that
x is of the form (10), which is equivalent to K < M.

(10)
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We shall proceed by contradiction and assume that K =
Ix]lo > M + 1, meaning that there exists (at least) (M + 1)

indices ny,...,ny+1 € {l,...N} such that x,, # 0 for
every m. We set X = X — Znﬂf;rll Xn, €n,, and, for m =
1,....,M+1,

Yn = xanen,,,~ (11

Since any collection of (M 4+ 1) vectors in RY is lin-
early dependent, there exists some constants ¢, such that
¢=(c1,...,cpr1) # 0 and Znﬂf;rll cmYm = 0. Correspond-
ingly, we define xo = Zm;rll CmXn,,€n, . We also pick an
€ € R with |e] < 1/maxy,|cy| such that (1 + €c;,) > 0 and
(1 — €cpy) > 0 for all m. Since Hxy = Z;IZI;I cm¥Ym = 0, we
have that Hx = H(x—e€x¢p) = H(x+€Xg) so that (x+€xg) and
(x — €xg) are in U. Moreover, because Xy and X have disjoint
support, we have that

M+1
Ix £ exolli = X+ D (1 €cn,)xn, n, |
m=1
M+1
= IXlh + D (1 +ecp,)lxn,|
m=1
M+1
= Ixlh £ € D cn,lxn,|
m=1
M+1
=azxe z Cripy X |
m=1

If Z;IZI;I ¢,y %0, | # 0, then (X + €xp) or (X — €xp) has a
{1-norm strictly smaller than «, which is impossible since the

minimum over U is a. Hence, > ¥*l¢, |x, | =0, and
Ix +exollt = [Ix — exoll1 = a. (12)

In other words, there exists ¢ > 0 such that (x + €xp),
(x — €xp) € V, which implies that

1 1
X=§(X+€X0)+§(X—€XO) (13)
is not an extreme point of V. This proves that K < M. ]

We like to mention a related result [32, Th. 3.1, p. 62] on
the maximal cardinality of the support of the solution of the
problem

min ||x||; subjectto Hx =y

under the assumption that the problem admits a unique min-
imizer. It is also indicated there that the result does not
carry over to the complex setting. Theorem 6 constitutes a
substantial extension as it applies to a much broader class of
problems—it also provides the structure of the full solution set
for the more typical cases where the minimizer is not unique.

C. Incorporation of a Regularization Operator

To cover a broader spectrum of applications, we are also
interested in problems involving a regularization operator or
a dictionary. We shall now see that this extension is straight-
forward when the regularization functional is coercive; that is,
when there exists a constant A > 0 such that A||x||, < [|Lx]|,
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for all x € RV, In finite dimensions, this translates into L
being an invertible matrix of size N. The analysis of the more
challenging non-coercive scenario is deferred to Section IV-C.

Corollary 7 (Convex problem with {5 regularization): Let
H: RV - RM : x > Hx with M < N be a linear
measurement operator and C is a closed convex subset of
RM such that its preimage in R, &/ = H™'(C), is nonempty
(feasibility hypothesis). L is an invertible regularization matrix
of size N that can be chosen arbitrarily. Then,

V =arg min |Lx|5 st HxeC (14)
xeRN
has a unique solution of the form
M
XLSs = Z amﬁm = ﬁTa. (15)
=1

where H” = (L”L)"'H”.

Proof: Since L is invertible, we define the auxiliary
variable u = Lx, which allows us to rewrite y = Hx = Gu
with G = HL™!. Likewise, the convex set C in the space
of the measurements y is linearly mapped into a nonempty
convex set I/ in the space of the auxiliary variable u. We then
apply Theorem 5, which yields the generic solution

us =G a s x g = (L'L)'H a.

|

Corollary 8 (Convex Problem With €1 Regularization): Let

H: RV - RM : x > Hx with M < N be a linear

measurement operator and C be a closed convex subset of

RM such that its preimage in R, &/ = H™!'(C), is nonempty

(feasibility hypothesis). L is an invertible regularization matrix
of size N that can be chosen arbitrarily. Then,

V =arg min |Lx|; st HxeC (16)
xeRN

is a nonempty, convex, compact subset of RY with extreme

points Xgparse Of the form

K
Xsparse = Zakgnk (17
k=1

with K < M and ||LXgparsell1 = Zle |ak|. The basis vectors
g,, with indices ny € {1,..., N} for k =1, ..., K are taken
within the N-dimensional dictionary

G' =g --ev]=@H.

Proof: The proof here too is based on the direct applica-
tion of Theorem 6 with the auxiliary variable u = Lx. [ ]
The remarkable outcome is that the reconstruction space is
now entirely determined by the regularization operator L, and
independent of the measurement setup, in sharp contrast with
the £, scenario in Corollary 7.

Corollary 8 tells us that the extreme points of the opti-
mization problem (16) are constructed by picking the “best”
K « N elements within a dictionary that is specified by the
row vectors of L~!. While this proves that the solution set is
intrinsically sparse, it is primarily an existence result because
Theorem 6 does not tell us which elements to pick (i.e., the
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value of the index n) nor the values of the weights a;. Again,
the powerfull aspect here is the generality of the result since it
applies to a complete class of convex optimization problems.

An alternative formulation could be to specify the aug-
mented vector a = (aj,...,ay) € RV with the implicit
understanding that one is restricting our choice of candidates
to those that are K-sparse with K < M. The optimal config-
uration would then be achieved when ||a||; = minygy |Lx]|;.

D. The Special Case of Total Variation

To make the connection with the popular “total variation”
scenario, we take L. = D as the finite difference operator

1 -1 0o --- 0 0
0 1 -1 --- 0 0
D= (18)
0 0 o --- 1 -1
0 0 0o --- 0 1
Its inverse is given by
1 1 1 1
0 1 1 1
D! =
0 0 0 1 1
0 0 0 0 1

which is an upper triangular matrix of ones.

The interpretation of Corollary 8 is that the corresponding
solution will then be formed by selecting a few rows of D~!
(or columns of D~!T), which results in a solution that is
piecewise-constant with K jumps of amplitude a;. The total
variation of the solution is then measured by the £; norm of
the coefficient vector a = (ay, ..., ak); Le.,

IXsparsellTV = [DXsparselle; = llalle, .

This is consistent with one of the earliest schemes used to
solve compressed sensing problems [29]. The interest of our
theorem is that it explains why the optimization of total
variation always admits a piecewise-constant solution. While
this behavior is well known and amply documented in the
literature, we are not aware of any prior mathematical analysis
that shows that the generic form of the solution (piecewise-
constant) is actually independent of H.

By contrast, there is no such decoupling in the ¢, scenario
where the influence of the regularization and the characteristic
footprint of the system matrix are intertwined. Specifically,
Corollary 7 tells us that the basis functions are now given by
H” = (D"D)~'H” which amounts to some smoothed version
(doubly integrated) of H”. In particular, if H” is taken to be
the identity or a non-uniform sampling matrix, then the £»
solution becomes piecewise-linear with breakpoints (or knots)
at the sampling locations, which is a rather different type of
signal.

We conclude this section with an important remark con-
cerning our use of the above finite-difference matrix. Indeed,
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another choice could have been the circulant matrix

I -1 o --- 0 0
0 I -1 -+ 0 0
Digsi = 19)
0 0 o --- 1 -1
—1 0 o --- 0 1

which is almost the same as (18), except for the additional
—1 in the lower right. Now the major difference between
D and Digy is that the latter, which maps into a circular
convolution, annihilates constants. While this property is very
desirable for regularization purposes, its downside for the
present demonstration is that it spoils the invertibility require-
ment for the application of Corollaries 7 and 8. To handle such
cases, we need the non-coercive counterparts of these results,
which are presented in Section IV-C. At any rate, the bottom
line for total variation is that the piecewise-constant form of
the solution is preserved in either cases, the main difference
being that Dy gr does not penalize constant signals (spanned
by the first row vector of D™1).

IV. INFINITE DIMENSIONAL ANALYSIS

We will now extend our analysis to the infinite dimensional
setting. While the basic ideas underlying the proofs remain the
same, the formulation becomes more technical because we
have to properly deal with topological issues; in particular,
the complication that the unit ball in ¢;(Z) is no longer
compact. Another substantial generalization is that we are
also treating the very relevant case of regularization operators
whose null space is non-trivial. To help the readers who
are not so much at ease with functional analysis, we have
done our best to clarify the presentation by including tutorial
explanations.

A. Notation

Following the standard convention in signal processing,
discrete signals or sequences are indexed using square brackets
with the index running over Z; i.e., x[n] denotes the sample
of the signal x = x[-] at location n € Z. Likewise, the
infinite-dimensional counterpart of the canonical basis {e,}"_,
is {0[- — nl},ez where J[- — ng] denotes the unit impulse at
some fixed location ng (the dot “-” is a placeholder for the
domain variable of the input that is used to avoid notational
confusion).

Instead of matrices, we shall now consider linear operators
acting on suitable Banach spaces. These are denoted by capital
letters. For instance, the operator G : & — ) maps the
space X (the domain of the operator) into ); its action is
denoted by x — y = G{x} with x € X and y € ).

B. Infinite-Dimensional Representer Theorems

We first formulate the optimization problem in the real-
valued Hilbert space £2(Z) equipped with the ¢5-inner product

(x,y) = 2 ez x[nlylnl.
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Theorem 9 (Convex Problem With €2(Z) Minimization): Let

us consider the following:

o« H:0:(Z) > RM, x + ((h1,x), ..., (hy,x)) is a linear
measurement operator such that |[H{x}|| < Blx|l¢, for
some constant B > 0 and every x € {7(7Z);

o Cis a closed convex subset of R such that its preimage
in (2(Z), U = H'(C) = {x € €2(Z) : H{x} € C},
is nonempty (feasibility hypothesis).

Then, the problem

V= argxggzi?z) lxlle, st.H{x}eC (20)
has a unique solution of the form
M
xLs = D amhy = H*{a}. Q1)
m=1

Proof: The first part of the argument is the same as in the
proof of Theorem 5. The linear operator H is bounded, and
therefore continuous. Hence, U/ (the preimage of C through a
linear and continuous transformation) is closed and convex,
while the minimizer of (20) xps = x¢ is unique (by Hilbert’s
projection theorem).

The second part is now handled in a softer manner by using
a geometric argument. Let M = span{hk},i‘”: , and ML =
{x € 2(Z) : H{x} = 0} be the orthogonal complement of M,
which also coincides with the null-space of H. Since £»>(Z) =
M @ M, every x € (»(Z) has a unique decomposition as
X = u + ut with u € M and ut € M=L. Then, the solution
xo can be written as xo = ug + ué Since H{xo} = H{uo}, xo
and ug both lie in U. As xq is the solution of (20), we have

2 2 12 2 142 2
Ilxoll® < lluoll* = lluo + ug II* = luoll® + llug 1> < lluoll
= llugll =0 ¢ ug =0

Thus, xo = uo implying that xo € span{hm}n"le, which can

be written in the form of (21). [ |

As expected, (21) is the infinite-dimensional counterpart
of (9) where the measurement vectors play the central role
in the solution.

Let us now focus our attention on ¢(Z), which is the
Banach space associated with the norm ||x[l¢, = >, czlx[n]].
The complication there is to properly handle the potential
issue of non-uniqueness. Since ¢{(Z) has an infinite number
of dimensions, the unit ball B = {x € £{(Z) : ||x|l¢, < 1}
is not compact anymore for the Banach topology. However,
by considering a weaker notion of convergence on ¢(Z),
we recover compactness and are able to generalize Theorem 6
for infinite sequences. The space of sequences that vanish
at oo is denoted by co(Z). It is a Banach space when
endowed with the supremum norm. The space £1(Z) is the
topological dual of c¢o(Z). We can therefore define the weak*-
topology on €(Z); that is, the topology associated with the
following notion of convergence: a sequence (X;)n,enN Of
elements of ¢1(Z) converges to 0 for the weak*-topology if

alnlxpln]] — O (22)
Z ‘ ‘ m— 00
neZ

for every a € co(Z). Note that the sum ZnEZ ’a[n]x[n]’ is
always finite for @ € co(Z) and x € £1(Z). As suggested by
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the name, the weak*-topology is weaker than the usual Banach
topology. Indeed, the convergence to O for the £1-norm implies
the convergence to 0 for the weak*-topology due to the relation

> lalnlxin]] < llalleyllxle, - (23)
nel
We say that a subset of ¢1(Z) is weak*-closed

(weak*-compact, respectively) if it is closed (compact,
respectively) for the weak*-topology. The crucial point for us
is that the ball B is weak*-compact in €{(Z), as implied by
the Banach-Alaoglu theorem [35, p. 68]. For more details on
the weak*-topology, we refer the reader to [35, Section 3.11].

Theorem 10 (Convex Problem With €|(Z) Minimization):
Let us consider the following:

e H:({(Z) — RM is a linear measurement operator such
that [|[H{x}|| < Alx]|l¢, for some constant A > 0 and
every x € (1(Z);

o Cis a closed convex subset of R such that its preimage
in £1(Z), U = H'(C) = {x € ¢1(Z) : H{x} € C},
is nonempty (feasibility hypothesis).

Then,

Y =arg min |x s.t. H{x} e C
gxdl(z) llx1le, {x}

is a nonempty, convex, weak*-compact subset of ¢;(Z) with
extreme points Xsparse Of the form

K

Xsparse = Zaké[' — ng]
k=1
with K = |Ixspasello < M, nx € Z for k = 1,..., K and
K
”xsparsenfl = Zk=l lak].

Proof: The fact that V is nonempty, convex, and weak*-
compact follows from classical theorems in convex analysis,
as detailed in Appendix B. The form of the extreme points is
then established using the same argumentation as in the proof
of Theorem 6. [ ]

(24)

C. Extensions for Non-Coercive Regularization Functionals

In Section III-C, we have seen that there is no major
difficulty in extending the representer theorems for more gen-
eral scenarios involving an invertible regularization operator L.
The concept carries over to infinite dimensions as well under
the same assumption that the mapping is injective; that is,
when the null space of the operator is trivial (M = {0}).

We shall now show that we can do much more and handle
the non-coercive cases where the null space of the regulariza-
tion operator

M ={q:Z— R|L{g) =0} =span{p,}}0, (25

is finite dimensional of size Ny where we are assuming that
the p, (basis elements) are linearly independent. The null
space of L has a privileged role in the problem formulation
because it incurs no penalty. This has the effect of promoting
solutions whose null-space component is the largest possible.
For instance, in the case of the finite-difference operator, any
constant signal results in a zero-cost solution.
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While such an extended setting is very attractive from a
practical perspective, it introduces a higher level of difficulty
because the operator L is no longer invertible in the usual
(two-sided) sense. Yet, we shall see that it is still possible
to specify some proper right inverse via the introduction of
suitable boundary conditions. But prior to that, we need to
spell out the conditions that ensure that an operator is well
defined over £, (Z), the cases of interest being p =1, 2.

In our framework, the concrete description of a linear
operator G is provided by its kernel (or generalized impulse
response) Glk,I] = G{J[- — []}[k]. To make things more
concrete, simply think of G[k, /] as an infinite-dimensional
matrix that is applied to the signal x = x[-] = (x[[]);ez.

Definition 11: Given some sequence (or discrete signal)
x = (x[kDrez, we say that G{x} is well defined if

> |Gk, 11x[]| < +o0
leZ

for any fixed k € Z where G[-, -] is the kernel of the operator.
The output signal G{x} is then specified by G{x}[k] =
> ez Glk, l1x[1] for k € Z.

Definition 12: A sequence x = (x[k])rez is said to be of
slow growth if there exists an integer nop € Z and a constant
A > 0 such that

Ix[k]] < A(1 + k)™ for all k € Z.

The space of such sequences is denoted by S'(Z). It is the
discrete counterpart of S’(R) (Schwartz’s space of tempered
distributions). As the notation suggests, S’'(Z) is actually the
topological dual of S(Z): the space of rapidly-decreasing
sequences [36].

Proposition 13: The generic linear operator G : x >
y = G{x} is well defined over ¢,(Z) if and only if its kernel
satisfies

Gk, lle, < o0 (26)

for any k € Z where p’ = p/(p—1) is the conjugate exponent
of p € [1, co]. Moreover, G is bounded from €1 (R) — £~ (R)
if and only if

sup |Gk, 1]] < oo.
k,leZ

Proof: The sufficiency of (26) is established by using
Holder’s inequality to construct the estimate

z |Gk, Lx[1]] = IGLk, -lle,, lIx]le, -
€7

27)

Conversely, if there is some kg € Z such that Glko, ] ¢
{,(Z), we can construct a worst-case signal x € ,(Z) such
that ZleZ |Glko, [1x[1]] diverges (since the Holder inequality
is sharp).

By taking the supremum of the above estimate for p = 1,
we get

IVt = 1GEx}les < ( sup IG[k,l]I) llxlle; -

k,leZ

for all x € €1(Z), which shows that (27) implies that G is
bounded from ¢1(Z) — €+ (Z). The necessity is established

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 9, SEPTEMBER 2016

by considering w; = Jd[- — ] € {1(Z) with |Jw;|l¢, = 1. Since
G{w;} = G[-, 1], we have that

IG{witlle = IGL- ey, = sup |Gk, 1],
keZ
for any / € Z. On the other hand, the boundedness of G implies
that

IG{wi}lle., = sup|Glk, I < Gl (28)
keZ

where

IGI < sup |Gk, I]].
k€7
Since (28) must hold for all /[ € Z including the value
that achieves the supremum, we conclude that the bound is
sharp. |
We are now ready to specify the vector spaces over which
the global optimization is going to take place as

CpL(Z)={x:7Z — Rs.t ||L{)C}||[p < 00}, 29)

with p = 1, 2. By definition, the operator L maps £, 1.(Z) into
{,(Z). Our first step is to establish that £, 1 (Z) is a bona fide
Banach space. The difficulty is that |[L{-}|l¢, is only a semi-
norm on £, 1 (Z); that is, it has all the properties of a norm
except that [[L{x}|[¢, = O does not imply that x = 0. This is
resolved by factoring out the null space of the operator.

Proposition 14: Let ||-||n; be some admissible norm for
the finite-dimensional null space A, and Proj v, @ projection
operator from €, 1 (Z) into M. Then, £, 1.(Z) defined by (29)
is a Banach space for the composite norm

IL{x}le, + IProjag {x}Hiag -

Proof: We recall that the elements xp of the quotient
space €, 1(Z)/Ni. are equivalence classes on ¢, 1.(Z) such
that, for x € ¢,1.(Z), xo = {x +q : g € Np}. Since
the quotient space does not distinguish between elements
x,y € €p1(Z) such that x —y € N, we can endow it
with the norm ||L{xp}|l := IL{x}||,, where x is any member
of the equivalence class xg. This shows that €, (Z)/Ni. is
a Banach space, while the same property obviously holds
for ML. It follows that the direct sum of those two spaces,
{pL(Z)/N1, + N1, is a Banach space for the sum-norm
Irg. @)l = IL{xollle, + llgllag with xg € £,L(Z)/AL
and ¢ € NL. The final step is to specify the isomorphism
between ¢, 1.(Z) and ¢, 1(Z)/N. + N via the relation
X — (xo, Proj A {x}) where xg is the equivalence class of
x in €, 1.(Z)/NL and Projy. {x} the projection of x into Np.
To make the link completely explicit, we further identify x¢
with x — Projy; {x} which is the unique element of xp whose
projection onto A, is zero. The reverse map is then simply
(x0,q) = xg + g, which spans the complete space £, 1. (Z).
As a consequence, ¢, 1 (Z) inherits the Banach space structure
of the direct sum. [ ]

Let us note that Proposition 14 is a high-level statement
that holds for any admissible norm |-||o; and projection
operator Proj; . It turns out that the exact choice of these
elements has no influence on the Banach topology of ¢, 1.(Z).
The explanation lies in the fact that the null space N is
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finite-dimensional and that all finite-dimensional norms are
topologically equivalent. The finite-dimensionality of A, also
guarantees the existence of the projector Proj; : €p 1L(Z) —
NL (by the Hahn-Banach theorem); the main point is that
the latter should be seen as an extension of the identity
map i : M. — AL to the whole space ¢, 1(Z). In the
sequel, we will fix these elements in order to properly
invert the operator L. This will be achieved by imposing
No linear boundary conditions, as will be made explicit
in Theorem 16.

Definition 15 (Admissible Regularization Operator): A lin-
ear operator L : £, 1.(Z) — {,(Z) is called admissible if

1) it has a finite-dimensional null space N = {g €
tp(Z) : Lig} = 0} spanned by some basis p =
(pla B PN0)§

2) it is right-invertible in the sense that there exists a kernel
pL € S'(Z x Z) (the space of bi-infinite matrices with
slow-growing rows and columns) with the property that
L{pLl-, 11} = o[- —1].

It is important to note that the fundamental solution of
L{pL[-, 1]} = o[- — ] (or discrete Green’s function) is not
unique (unless Ny = 0) since any kernel of the form
q + pL[-,1] with g; € NL is acceptable as well. We shall
now show that there are some privileged forms that result in
an inversion that is stable over £2(Z).

Theorem 16 (Stable Right-Inverse Operator): Let L be an
admissible regularization operator in the sense of Definition
15. We also assume that we are given some corresponding
set of biorthogonal analysis functionals ¢ = (¢1, ..., dn,)
with ¢, € f/z,L(Z) (the continuous dual of £ 1,(Z)) such that
(m» Pn) = 0lm — n]. Then,

Hig = {x:Z— R |L{x} € {,(Z) and (¢, x) = 0}

is a Hilbert space equipped with the inner product (f, g)L =
(L{f}, L{g}). Moreover, there exists an isometric map L;l :
{2(Z) — 'Hy,¢ such that

Hig={x=L'w:webZ)

The operator L;l is uniquely specified through the following
properties
1) Right-inverse property: LL(;lw = w for all w € £,(Z)
2) Boundary conditions: (¢, L;l w) = 0 for all w € (>(Z)
and its kernel is given by
No
golk. 11 = pLlk, 11 =" pulklgalll,
n=1
with gn[l] = (pLl",{], ¢n) and pr such that L{pL[-,[]} =
ol —1].
Proof: 'We start by proving that Hy, ¢4 equipped with the
inner product

(30)

(x1, x2)L = (L{x1}, L{xa}) = (L*L{x1}, x2) €1V

is a Hilbert space. The only delicate aspect there is to
establish the unicity property of the inner product: (xo, x9)L, =
0 & xo = 0. To that end, we observe that the condition
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(L{xo}, L{xo}) = 0 is equivalent to xo € NL. Thanks to the
biorthogonality of p and ¢, we also know that
No
q=" (pnq)Pn
n=1
for all ¢ € N.. Finally, we use the boundary conditions
(¢, x0) = 0 to conclude that xg = 0.

The idea is then to first establish the properties 1) and 2) of
the operator L. ! on the space of rapidly-decreasing sequences
S(Z) to avoid any technical problems related to the splitting
and interchange of sums. Since the space S(Z) equipped
with the standard weighted-{> Fréchet topology is dense in
€2(Z) [36], we are then able to extend the properties by
continuity.

For notational purpose, we introduce the operator G : x +—
> ez pLL- 11x([1], which is well defined over S(Z) as long as
pLl ] € §'(Z x Z). By assuming that w € S(Z), we can
therefore rewrite x = L;l{w} as

No
x =Ly () =G{w) = D _ paign. w).
n=1

Next, we apply the operator L, which yields

No
LL, {w} =L {Z wlllpLl-, l]} — > L{pa}{gn, w)
n=1

leZ -0

= > wllL{pL[- 1]}

keZ
= > wlol- —ll=w
keZ

where we have used the defining properties L{p.[-,/]} =
o[- — 1] and L{p,} = 0 forn = 1,---, Ng. In particular,
this implies that

1L w2 = Ly {w), Ly o)L = o),

for all w € S(Z), which shows that L;l is bounded in the
> norm.
As for the boundary conditions, we first observe that

gnlll = (pL[", 11, ¢n)
= > pLlk, palk] = G*{pu}11]

keZ

where G* is the adjoint of G. We then make use of the
biorthogonality property (¢, pn) = J[m — n] to evaluate the
inner product of L;lw with ¢, as

(32)

No

(s Ly {w}) = (B> Glw}) = D (bm> Pad{gn, w)
n=I

= <¢m» G{w}> - <Qm, w)
= (G*{Pm}, w) — (G {¢pm}, w) =0,

which shows that the boundary conditions are satisfied.
In doing so, we have effectively shown that L ! continuously
maps S(Z) into Hy 4. Again, since S(Z) is dense in £2(Z),
the boundary conditions do also extend to £2(Z) by continuity.
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As final step, we invoke the Hahn-Banach theorem in
conjunction with the ¢, bound (32) to extend the domain of the

operator to all of £,(Z). This allows us to conclude that qul

continuously maps £2(Z) — Hy g. In fact, L ! 0(Z) —
Hy,s is an isometry that provides a stable inverse of the
operator L : Hy ¢ — £2(Z). In other words, we have shown
that the operator L;l whose kernel is specified by (30) is such
that LL;lw = w, ((I),L(;lw) =0 and ||L;1w||L = ||wll¢, for
all w € €2(Z). |

Since ¢,(Z) < ¢»2(Z) for p € [1, 2], one can obviously also
restrict the domain of the inverse operator L'to¢ p(Z) with
the insurance that Properties 1) and 2) are met for w € £, (Z).

As demonstration of usage, let us consider the finite-
difference operator D, which is specified as

x — D{x} =x[-]—x[-—1].

This operator is the infinite-dimensional counterpart of D in
Section III-D. It is shift-invariant, and its Fourier symbol
is (1 — e_j“’), which exhibits a single zero at o = O.
Consequently, D has a one-dimensional null space Np =
span{p1} € €-o(Z) that is spanned by the “constant” signal
pi1lk] = 1. The simplest choice of biorthogonal analysis vector
is ¢p1 = J[-] with the property that

g = {d[-],q)p1 = q[0]p1

for all ¢ € Np. A possible choice of fundamental solution is
pplk, 1] = 14[k — I] with the property that D{1[- — ]} =
J[- —1]. The application of Theorem 16 then yields the kernel
of the corresponding right-inverse operator D;II:

gslk, 1] = Ly[k — 1] — Ly [-1].

Its stability is revealed by observing that, for kg > 1,
gslko, 1] = 1q,. k], which is compactly supported of
size ko, and hence included in ¢ p/(Z) for all p’ > 1. This
guarantees that x +— Dfl1 {x} is well defined for any x € ¢, (Z)
with p > 1 (see Proposition 13).

This is in contrast with the “canonical” shift-invariant inver-
sion mechanism x + y = 14 % x (moving sum filter), which
is ill-defined on ¢,(Z) for p > 1.

The main point that we want to make here is that the
inversion task is not trivial (because the standard system-
theoretic solution is not directly applicable), but that it can nev-
ertheless be achieved in a principled fashion by applying the
constructive procedure described in Theorem 16. In essence,
the second term in (30) is a mathematical correction that makes
the (right)-inverse operator ¢ ,-stable for 1 < p < 2.

D. Extended Regularization Theory

We have now all the tools in hand to make the Banach
structure of ¢, (Z) suggested by Proposition 14 explicit.
This, in turn, will allow us to derive the generic form of the
optimizer for p =1, 2.

Theorem 17 (Direct Sum Decomposition): Let L be a reg-
ularization operator that admits a stable right-inverse L ! of
the form specified by Theorem 16. Then, any x € £, 1.(Z)
with p € [1, 2] has a unique representation as

x:L;lw—i—q,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 9, SEPTEMBER 2016

where w = L{x} € €,(Z) and ¢ = 3"° (¢n,x)pu € M.
Moreover, £ 1.(Z) is a Banach space equipped with the norm

lxllp.L.¢ = IIL{x}e, + 1(x, D)2 (33)

Proof: The right-inverse operator L' is obviously well-
defined for w € €,(R) C {2(Z). Let x1, x2 € £, 1.(Z) be such
that L{x1} = L{x2} = w. By definition of the null space, this is
equivalent to (x; — x2) = g € NL. Conversely, let x = L;lw
with w € €,(Z). Then, the condition [[L{x}|, = [lwl, <
oo ensures that x € £, 1(Z). This allows us to deduce that
€,.L(Z) is the sum of Ny, = span{p,}"*, and

BpLg =1{x= L;lw tw e ,(2))
= {-x € fp,L(Z) : (¢Vl’x> = O,I'l = 19 "'9N0}’

where B, 1 4 is a Banach space equipped with the norm
IL{-}ll¢,. Its completeness is inherited from the one of £, (Z)
and the fact that the inverse operator L;l performs an isomet-
ric mapping ¢ ,(Z) — B, 1,¢. Moreover, since (¢, L;l w) =10
(boundary conditions) and the ¢, are biorthogonal to the p,,
we find that the null-space component g is given by

No
q =D (B, X)pn = Projy; {x}

n=1

It is therefore specified by its expansion coefficients
(@, x) = (($1,x), ..., (#Ny, X)) whose {2-norm is [[{@, x}||2.
This shows that the decomposition x = qulw + g, where
w = L{x} € €,(Z) and ¢ € N, is unique, which also
translates into £, 1.(Z) = Bp1.¢ ® NL because £, 1 ¢(Z) N
NL = {0}. The final part of the argument is the same as in
Proposition 14 with B, 1 ¢ being isomorphically equivalent to
the quotient space €, 1 (Z)/NL.. [ |
Using Theorem 17, we now proceed to provide the results
for convex optimization with ¢ and ¢, regularizers. The tech-
nical part concerning the weak*-compactness of the solution
set is taken care in Appendix B.
Theorem 18 (Convex Problem With (> Regularization): Let
us consider the following:
e L : 021.(Z) — {2(Z) is an admissible regularization
operator in the sense of Definition 15;
e H: 60.(Z) - RM : x — ((h1,x),..., {(hm,x))
is a linear measurement operator such that, for any
x € {1.(2),

Allx, @) 2 = IH{x}l2 = BUIL{x}l¢e, + {(x, $)2)
(34)

for some constants A, B > 0 and ¢ as in Theorem 16;
« C is a closed convex subset of RM such that its preimage
in (2(Z), U = H'(C) = {x € t,L(Z) : H{x} € C},
is nonempty (feasibility hypothesis);
. L;l : 02(Z) — €5,1.(Z) is a stable right-inverse of L as
specified in Theorem 16.

Then,

VY =arg min |L s.t. H{x}eC
gxefzyL(Z) IL{x}le, {x}
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is a nonempty, convex, weak*-compact subset of {2 1 (Z) with
solutions of the form

xLS_Zamh +po with iy =L, 1L Y(h,), (35)

m=1

where @ = (aj,...,ay) is a fixed element of RM and
po € N a null-space component that describes the full
solution set; i.e., po € H™! (C —H {zrﬁle amﬁm}) N M.
In particular, when C reduces to a single point, then the
solution is unique.

Proof:  The property that )V is non-empty, convex and
weak*-compact is covered by Lemma 20 in Appendix B.
Consider the set Cp. = {z +H{p}, z € C, p € NL}. We define
the new optimization problem

W =arg min |jw|> s.t. (HL; H){x} € CL. 36

g min [wlz st HLHix}ec. (6
Cp is closed and convex as the sum of two closed and convex
sets, C and H(NVL). Moreover, we easily show that

= ML) (L) =LH'(©)). (37)

Since the set / = H~!(C) is nonempty by assumption, the
same holds true for Uy = L(U). We are therefore fulfilling the
conditions of Theorem 9, from which we deduce that there
exists a unique minimizer wrs = (HL;l)*{a} in W, with
acRM,

Let xo € V, which is decomposed as xo = Lgl{wo} + po
with wg € €2(Z) and py € NL. Then, L{xo} = wq and x¢ € U,
hence wg € Uy. Likewise, for any w € Uy, there exists x € U
such that L{x} = w. Since xop € V and x € U, we have
lwlle, = ILEx}le, = IL{xo}lle, = lwolle,- As this relation
is true for every w € Uy, wo € YV and therefore wo = wrs.
This shows that xo = L;l(Hqul)*{a} + po. Next, we define

x| = Lgl {wo} and simplify its expression as

IL 1*H*{a}

= z amﬁm

m=1

x1 =1L, 1(HL Y{a} =
- L7 1L—1*[Zam m}

where f, = L*‘L;l*{hm}. Since H{xo} = H{xi} +
H{po} € C by definition, we deduce that py necessarily lies in
—1(C — H{x1}). Conversely, any element of the form (35) is
clearly in U/, and hence in V when a is chosen optimally. B
Theorem 19 (Convex Problem With €1 Regularization): Let
us consider the following:
e L : {1 L(Z) — (1(Z) is an admissible regularization
operator in the sense of Definition 15;
e pL[-, ] is a kernel such that L{pr[-, ]} = o[- —[] for all
leZ.
e H: (1 1L(Z) — RM is a linear measurement operator such
that, for any x € {1 1.(Z),

All(x, @)ll2 < IH{x}l2 < B(IL{x}lle; + I(x, )112)
(38)

for some constants A, B > 0 and ¢ as in Theorem 16.
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o C is a convex compact subset of RM such that its preim-
age in {1.(Z), U = H’I(C), is nonempty (feasibility
hypothesis).

Then,

Y =arg r[nm IL{x}lls, s.t.H{x}eC
is a nonempty, convex, weak*-compact subset of £ 1.(Z) with

extreme points of the form

K No
Xsparse = Z axpLl-, nig] + Z by pn (39)
k=1 n=1
with K < M, nx € Z, ar,by, € R, and ||[L{xsparse}lle;, =
>y lal.

Proof: Here too, we refer to Lemma 20 with p = 1 for
the non-emptiness, convexity, and weak*-compactness of V.
The remainder of the proof is essentially the same as the one
of Theorem 6. For a fixed extreme point x, we assume that
L{x} is not K-sparse and that we can find at least M + 1
elements ny, ..., ny+1 such that L{x}[n;] # 0 and we show
that x is not an extreme point. The final observation is that
Xsparse = L;l{woo} + poo can be rewritten as (39) by using
the explicit form of the kernel of L;l given by (30). [ |

Once again, it is instructive to compare the solutions
of the ¢ and ¢; regularization problems covered by
Theorems 18 and 19. The first fundamental difference is that
the solution of the ¢, problem is constrained to live in a fixed
finite-dimensional subspace of ¢,, while the reconstruction
space for the £; problem is adaptive and determined by the
problem and the data at hand. Interestingly, the first property
remains valid for the ¢, regularization even if the solution
of the extended problem in Theorem 18 is no longer unique
because of the additional degrees of freedom offered by the
null space component. The second distinction is in the form
of the basis functions: In the ¢ case, there is a charac-
teristic intertwining between the effect of the measurement
and regularization operators, while in the {; scenario the
basis functions are chosen within a dictionary {pr[-, nl}re7z
whose form is completely determined by the regularization
operator L. This part of the story is completely in line with
the findings of Section III so that all the comments that have
been made there are still pertinent.

The novel aspect in our two last representer theorems is the
appearance of the second parametric term py = Zflvil bn pn,
which encodes the component that is in the null space of
the operator. As already mentioned, the role of pg, whose
regularization cost is zero, is fundamental because it tries to
fullfil the constraints as much as possible in order to decrease
the £1 or ¢, penalty associated with the first component. While
the possibility of applying a regularization operator whose
null space is non-trivial is immensely useful in practice, it
requires a more sophisticated mathematical treatment. The
enabling ingredient is the construction and proof of existence
of a stable right-inverse operator under very weak hypotheses
(Theorem 16) which also constitutes one of the contribution
of this work.

We believe that the stability bounds used in the statement of
our infinite-dimensional representer theorems are the weakest



5178

possible hypotheses for this kind of optimization problem. The
upper bound on |[H{x}||» is the explicit way of indicating that
the measurement operator is well-defined in the sense that it
continuously maps €, 1.(Z) — RM: as far as we know, this
latter hypothesis (which is often implicit) is necessary for the
mathematical analysis of any inverse problem. Hence, the only
constraining hypothesis is the lower bound in (34) and (38),
which is required to counteract the lack of coercivity of the
regularization functional ||[L{x}| ,. It makes the problem well-
posed over the (very small) subspace NL; in other words,
the measurements should be rich enough to allow us to
unambiguously reconstruct the null-space component of the
signal. For instance, in the case of TV (i.e., L = D), there
should at least be one measurement functional %,, such that
(hm, 1) # 0, which is a very mild constraint. Also note that
the non-coercive scenario has the additional restriction that the
convex set C should be bounded.

E. Connection With Splines

In Section III-D, we have seen that the extremal points
of finite-dimensional linear inverse problems with a total-
variation regularization are necessarily piecewise-constant,
which suggests a connection with splines. We recall that
splines are continuous-domain entities (i.e., functions) that
are defined classically as the solution of a quadratic-energy
minimization problem subject to (linear) interpolation con-
straints [37], [38]. The concept is transposable to the discrete
domain as well, which leads to the related notion of discrete
splines with the regularization operator L = D" being the nth
power of the finite-difference operator D. Existence results
are also available for discrete splines with £, regularization
for p > 1 [39], but the explicit form of these splines has
only been worked out explicitly for p = 2. This corre-
sponds to the simplified setting H{x} = (x[k1], ..., x[kpm])
(non-uniform sampling operator) andC =y = (y1, ..., ym) €
RM in Theorem 18, which imposes the interpolation con-
straints x[k1] = y1, ..., x[ky] = ym. It is well known that
this problem admits a unique solution, which is the discrete
counterpart of a polynomial spline interpolant of degree 2n — 1
with knots at the k,,’s [39], [40].

In order to specify the solution of the ¢; variant of the
interpolation problem, we observe that D" admits a discrete
shift-invariant Green’s function p,[-] that is the n-fold convo-
lution of the discrete step 14 and hence a (discrete) one-sided
polynomial of degree n — 1. The corresponding form of the
extreme points in Theorem 19 is Z,le a pnl-—nil+ po where
the null-space component pg is a (discrete) polynomial of
degree n—1. In other words, they are discrete splines of degree
n — 1 with data-dependent knots (nk),f:1 and K < M. Besides
the reduction of the polynomial degree of the spline, the key
difference with the £, scenario is that the position of the knots
is adaptive and not known a priori. Yet, the truly remarkable
finding here is that this functional form of the solution remains
valid for any convex linear inverse problems with nth-order
{1-regularization, far beyond the classical spline setting.

Finally, we have recently managed to (literally) connect
the dots (that is, the samples of the signal) by developing
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a functional framework that is the continuous-domain coun-
terpart of the present theory; this is the topic of a forthcoming
paper whose name says it all [41].

V. CONCLUSION

In this paper, we have characterized the form of the solution
of general linear inverse problems with convex constraints and
€1 vs. {7 regularization. We have started from the simplest
finite-dimensional scenario and worked our way up progres-
sively to the more challenging family of (infinite-dimensional)
inverse problems covered by the Representer Theorems 18 and
19. We have striven for the maximal generality and the weakest
possible assumptions in order to cover the majority of convex
signal recovery problems encountered in practice. We believe
that these functional descriptions of the solution should be of
interest to researchers working in the field.

The primary message that emerges from this investigation is
the superiority of £; over {5 regularization for injecting prior
knowledge on the solution. For instance, the minimization
of ||D2{x}||g1 where D? is the 2nd-order difference operator
produces solutions that are piecewise-linear irrespective of the
system’s matrix H and the number of measurements. There is
no such independence between the characteristic form of the
solution and the system matrix in the case of ¢, regularization.

APPENDIX A
PROOF OF PROPOSITION 1

Let H be an arbitrary matrix of size M x N and Iy the
identity matrix of size N. We start by noting that

H'H + A1y)HT = HTHHT + /HT
= HT HHT + A1y)

The underlying hypothesis that 4 > 0 ensures that both
(H"H + Mly) and (HH” + AX,) are invertible. This allows
us to deduce that

H'H + Aly) "HT = HTHHT + A1) 7!,

which is the desired result.

APPENDIX B
CONVEXITY AND WEAK*-COMPACTNESS
OF SOLUTION SET

Here, we establish the convexity and weak*-compactness of
the sets of minimizers for the infinite-dimensional optimization
problems of Section IV. This result is preparatory for the proof
of all representer theorems.

When the operator L is invertible (including the simplest
case of the identity), the functional that we minimize is
coercive, convex, and lower semi-continuous. In that case,
Lemma 20 below can be deduced from standard results
in convex optimization [42, Sec. II-1]. However, when the
operator L has a non-trivial null space, the functional ||[L{x} ||§
is not coercive anymore and the proof must be adapted. This
is the main contribution of Lemma 20.

Lemma 20: For 1 < p < 2 fixed, let us consider the
following:
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e L : 0,1(Z) — (,(Z) is an admissible regularization
operator in the sense of Definition 15;

e H: (,1(Z) — RM is a linear measurement operator
such that, for any x € £, 1.(Z),

Allx, ¢)ll2 = IH{x}l2 = B(IL{x}ll¢, + [(x, $)2)
(40)

for some constants A, B > 0 and ¢ as in Theorem 16;
o C is a compact convex subset of R such that its
preimage in £,(Z), U = H~'(C), is nonempty (feasibility
hypothesis).
Then,

Y =arg min
XEZP’L

o Ll st Hix) c

is a nonempty, convex, weak*-compact subset of £, 1 (Z).
When the operator L is a bijection the conclusion remains
valid for any closed convex, but not necessarily bounded, set C.
Proof: The measurement operator H is linear by assump-
tion and bounded on £, (Z) due to (38); therefore, it is
continuous. The set U is closed convex as the preimage of
a closed convex set by the linear and continuous map H.
Next, we show that ) is nonempty. Let (x,) be a sequence
of elements of U such that |[L{x,}|l¢, decreases to f =
inf,y¢||[L{x}|[¢,. Based on Theorem 17, we decompose x, =
Lq;l {wn}+ py in a unique way with w, € €,(Z) and p, € N
Then, [[wnlle, = [IL{xa}ll¢, is bounded. Moreover, thanks to
the lower bound in (40), we have

{Pn, P2 =

A

1 1 -
7 1H{pa}llz = —lIH{x,} — HL, {w,)l2

IA

1
- (12 + IHL (wad2) . @)

The H{x,} are inside the bounded set C so that ||H{x,}|>
is bounded as well. Moreover, the composed operator HL;
is continuous from £,(Z) to RM and (w,) is bounded in
t,(Z), so that ||HL;1{wn}||2 is bounded too. This shows
that ||(pn, @)|l2 is bounded. The space N being finite-
dimensional, we can therefore extract a subsequence of (p,)
that converges to ps € NL. Since the sequence (w,) is
bounded in £,(Z), we also extract a subsequence that con-
verges to wee € €,(Z) for the weak*-topology. Finally, a
double extraction allows us to consider x,(;) = L;l {wem)} +
Do(n) that converges to xoo = L;l {weo} + poo for the weak*-
topology on £, 1.(Z). Then, the space U/ is closed and therefore
weak*-closed; hence, xoo € U as a weak*-limit of elements
in U. Moreover, |[L{xso}lle, < IL{xpm}lle, — B. Since
Xoo € U, we also have ||[L{x}|l¢, > B and therefore xo € V,
which is therefore nonempty.

Moreover, we can write V = U N B with B = {x €
Cp.L(Z), |IL{x}l¢, < B}. The space B is convex and weak*-
compact in ¢, 1(Z) due to the Banach-Alaoglu theorem.
Therefore, V is itself convex and weak*-compact as the
intersection of two convex sets, one being weak*-compact and
the other weak*-closed.

Finally, when the null space of L is trivial, the bound (41)
is not required, so that we do not need the compactness
of C. [ |
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