Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  GlobalBioIm Framework
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

GlobalBioIm: A Unifying Computational Framework for Solving Inverse Problems

M. Unser, E. Soubies, F. Soulez, M. McCann, L. Donati

Proceedings of the OSA Imaging and Applied Optics Congress on Computational Optical Sensing and Imaging (COSI'17), San Francisco CA, USA, June 26-29, 2017, paper no. CTu1B.


We present a unifying framework for the development of state-of-the-art reconstruction algorithms in computational optics with a clear separation between the physical (forward model) and signal-related (regularization, incorporation of prior constraints) aspects of the problem. The pillars of our formulation are: (i) an operator algebra with its set of fast linear solvers, (ii) a variational derivation of reconstruction methods, and (iii) a suite of efficient numerical tools for the resolution of large-scale optimization problems. These core technologies are incorporated into a modular software library featuring the key components for the implementation and testing of iterative reconstruction algorithms. The concept is illustrated with concrete examples in 3D deconvolution microscopy and lenseless imaging.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser1701.html,
AUTHOR="Unser, M. and Soubies, E. and Soulez, F. and McCann, M. and
	Donati, L.",
TITLE="{GlobalBioIm}: {A} Unifying Computational Framework for Solving
	Inverse Problems",
BOOKTITLE="Proceedings of the {OSA} Imaging and Applied Optics Congress
	on Computational Optical Sensing and Imaging ({COSI'17})",
YEAR="2017",
editor="",
volume="",
series="",
pages="",
address="San Francisco CA, USA",
month="June 26-29,",
organization="",
publisher="",
note="paper no.\ CTu1B")

© 2017 OSA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from OSA. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved