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Abstract: We present a unifying framework for the development of state-of-the-art
reconstruction algorithms in computational optics with a clear separation between the physical
(forward model) and signal-related (regularization, incorporation of prior constraints) aspects
of the problem. The pillars of our formulation are: (i) an operator algebra with its set of
fast linear solvers, (ii) a variational derivation of reconstruction methods, and (iii) a suite of
efficient numerical tools for the resolution of large-scale optimization problems. These core
technologies are incorporated into a modular software library featuring the key components
for the implementation and testing of iterative reconstruction algorithms. The concept is
illustrated with concrete examples in 3D deconvolution microscopy and lenseless imaging.

OCIS codes: 100.3190, 110.1758, 110.3010, 110.6955

1. Introduction

A major trend in optical imaging is the shift towards computational imaging where sophisticated algorithms are being
deployed in order to reconstruct the information of interest from optical measurements. These measurements can
take the form of traditional images, as in the case of 3D deconvolution microscopy [1], interferograms/holograms,
modulations [2], or 2D projections of a specimen as in refractive-index tomography [3].

While the combination of optics and advanced signal processing offers unprecedented opportunities, it also comes
with its own difficulties. When being confronted with a new imaging problem, the common experience is that one has
to reimplement (if not reinvent) the wheel (=forward model + optimization algorithm), which is very time consuming
and also acts as a deterrent for engaging in new developments. The present framework (GlobalBioIm) aims at sim-
plifying this process by decomposing the workflow onto smaller modules, including many reusable ones since several
aspects such as regularization and the injection of prior knowledge are rather generic. It also capitalizes on the strong
commonalities between the various image formation models that can be exploited to obtain fast, streamlined imple-
mentations. We are planning to make GlobalBioIm available as a documented resource for algorithm developers
and researchers in optics to test new ideas and compare their methods against the state of the art.

The premise of GlobalBioIm is that it is possible—in keeping with the very successful ADMM philosophy—
to solve complex problems by decomposing them into a sequence of simpler subproblems, which are then solved
recursively until convergence. The other fundamental observation is that the computational cost primarily depends on
the efficiency of the linear step(s) (solver) of the algorithm that is directly related to the forward model.

2. Modular formulation of reconstruction problem

We now briefly explain how it is possible to decouple the physical aspects of the problem—the forward model that is
specific to each modality—from the imposition of prior constraints on the signal, which is the part where advanced
signal processing (e.g., compressed sensing and ¢;-minimization) kicks in. For simplicity, we assume that the imaging
model is linear. The reconstruction is then recast as the problem of estimating the signal, which is represented by the
vector x, of size Ny, from the “noisy” measurement vector y = Hx + n of size Ng,,. Here, H is the system matrix
of size (Ngaw X Nrec) that describes the physics of the imaging modality and rn is a disturbance or error term that
typically represents measurement noise. In addition to the reconstruction problem being ill-posed (meaning that we
cannot simply pseudo-invert H to retrieve x from y), the main bootleneck relates to the size of the system matrix which
is typically even too large to be stored within the computer.

To set the context and explain our vision, we focus on the class of algorithms summarized in Fig. 1, which is
consistent with the state of the art in several modalities. Indeed, when we take y — oo, we have that u = Lx so that
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Schematic structure of reconstruction algorithm:

Repeat
x™ = arg min J (x, u™):  Linear step (problem specific)
Niter (n) _ . . (n) . . s « .. »
u? = argmin J(x\") u): Statistical or “denoising” step

until stop criterion

Fig. 1. Simplified structure of a variational image-reconstruction algorithm. The idea is to decouple the physi-
cal, modality-specific part of the problem from the signal-modeling aspects which is treated in a generic fashion.

we can identify the matrix L as a “sparsifying” transform such as the gradient or a wavelet decomposition. The prior
constraints are imposed by taking R(-) to be a suitable penalty (or regularization) functional—the most popular choice
being R(u) = ||u||, which favors sparse solutions.

The conceptual advantage of this splitting is that the statistical step (ii) is completely generic (and therefore
reusable), while the linear step (i) is application-specific with the advantage that one can reutilize existing linear
reconstruction technology. This reasoning also suggests that one can essentially separate the issue of computational
speed—the dominant cost being in the linear step—from the issue of reconstruction quality since the statistical mod-
eling of the signal, if it is done properly, is responsible for the latter.

3. Library structure

Our inverse problem library, developed in MATLAB (MathWorks), relies on three main classes that are linear oper-
ators (LinOp), cost functions (Cost) and optimization algorithms (Opti). Specialized versions of these functions are
available as subclasses (e.g. LinOpGrad, LinOpConv, CostL2, OptiGradDsct) to address (and exploit) the specifics
of a variety of image reconstruction problems within the variational/Bayesian framework. This results in a modular
toolbox for solving inverse problems that is powerful, flexible and easy to use, as illustrated in the following example.

Practical example Fig. 2 presents a library script that performs a 3D deconvolution with a total variation (TV)
regularization. In effect, it solves the optimization problem,

1 .
Yrec = arg min S{[Hx—y[[3 + A xll7v +iz0(x). (1)
X

where H denotes the convolution operator, || - ||7v the TV “norm”, i>o(-) the indicator function over positive vectors and
A > 0 is a tradeoff factor between data fidelity and regularization. The two main steps in Fig. 2 consist respectively in
building the elements (costs and operators) of the objective in (1) and defining the optimizer. Here, we use the ADMM
algorithm [4] which is implemented to minimize functionals of the form:

F (x) := Fy(Hox) + Y F(Hyx). )

For the proposed 3D deconvolution example, we have Fy = 1||- —y||3, Ho =H, F; = A|| - |[»,1 the mixed ¢;-¢, norm,
H; =V the gradient operator, F» = i>(+) and H, = Iy the identity operator.

As demonstration of the power of modularity, we can switch from a “standard” total variation to a more sophisticated
Schatten-norm regularization [5] by simply substituting lines 8 and 9 by the code in Fig. 3. Similarly, one can readily
adapt the presented script to another modality (new operator H) by suitable modification of line 7. Hence, one can
apply the framework to different inverse problems and systematically test it out with various regularizers. With such a
set-up, the imaging scientist can focus his/her effort on the implementation of H (or its adjoint=backprojection)—the
only part of the code that is modality-specific.

Fig. 4 presents deconvolution results obtained using the two presented regularizations (TV and Hessian Shatten-
norm). One can observe that the Hessian-based regularization avoids the staircasing effect of TV. For both regulariza-
tions, the running time of the algorithm (150 iterations) is of the order of 10 min on a standard PC.
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1— Load data

load(’acq’); % Load Acquisitions
load (" psf’); % Load PSF

9% 2— Build Cost

FuncLS=CostL2 ([],acq); % Least—Sqaures functional
H=LinOpConv (psf); % Convolution Operator
FuncReg=CostMixNorm12 ([4]) ; % Regularizer Function (TV)
OpReg=LinOpGrad(size (acq)); % Regularizer Operator (TV)
FuncNN=CostNonNeg () ; % Indicator Function (Non—Negativity)

Id=

LinOpldentity (size(acq)); % Identity Operator (Non—Negativity)

9% 3— Opimize

Fn=
Hn=

{MultScalarCost (FuncReg,lamb) ,FuncNN }; % Functionals Fn
{OpReg,Id }; % Associated operators Hn

rho_n=[le—3,1e —3]; % Multipliers rho
ADMM=OptiADMM ( FuncLS ,H,Fn ,Hn,rho_n ,[]) ; % Optimizer ADVM
ADMM. maxiter=150; % Set max iterations
ADVMM. run (acq) ; % Run the algorithm

Fig. 2. Matlab script for 3D TV regularized deconvolution using the proposed library.

FuncReg=CostMixNorml1Schatt ([],1); % Regularizer Function (Hessian—Shatten Norm)
OpReg=LinOpHess(size (acq)); % Regularizer Operator (Hessian—Shatten Norm)

Fig. 3. Definition of the Hessian-Shatten norm regularizer (replaces lines 8 and 9 in Figure 2).

Degraded TV Hessian Shatten-Norm

-

Fig. 4. Deconvolution results on the synthetic volume of size 256 x 512 x 128 used in [1]. Top line: maximum
intensity projection (MPI). Bottom line: Zoom on a XY slice.
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