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of Linear Inverse Problems with
Generalized TV Regularization∗
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Abstract. Splines come in a variety of flavors that can be characterized in terms of some differential
operator L. The simplest piecewise-constant model corresponds to the derivative operator.
Likewise, one can extend the traditional notion of total variation by considering more
general operators than the derivative. This results in the definitions of a generalized total
variation seminorm and its corresponding native space, which is further identified as the
direct sum of two Banach spaces. We then prove that the minimization of the generalized
total variation (gTV), subject to some arbitrary (convex) consistency constraints on the
linear measurements of the signal, admits nonuniform L-spline solutions with fewer knots
than the number of measurements. This shows that nonuniform splines are universal
solutions of continuous-domain linear inverse problems with LASSO, L1, or total-variation-
like regularization constraints. Remarkably, the type of spline is fully determined by the
choice of L and does not depend on the actual nature of the measurements.
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1. Introduction. Imposing sparsity constraints is a powerful paradigm for solving
ill-posed inverse problems and/or for reconstructing signals at superresolution [6].
This is usually achieved by formulating the task as an optimization problem that
includes some form of �1 regularization [49]. The concept is central to the theory of
compressed sensing (CS) [9, 19] and is currently driving the development of a new
generation of algorithms for the reconstruction of biomedical images [36]. The primary
factors that have contributed to making sparsity a remarkably popular research topic
during the past decade are as follows:
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• the possibility of recovering the signal from few measurements (CS) with a
theoretical guarantee of perfect recovery under strict conditions [7, 10, 19];

• the availability of fast iterative solvers for this class of problems [4, 14, 26, 39];
• the increasing evidence of the superiority of sparsity-promoting schemes over
classical linear reconstruction (including Tikhonov �2 regularization) in a va-
riety of imaging modalities [36].

The approach developed in this article is also driven by the idea of sparsity.
However, it deviates from the standard paradigm because the recovery problem is
formulated in the continuous domain under the practical constraint of a finite num-
ber of linear measurements. The ill-posedness of the problem is then dealt with by
searching for a solution that is consistent with the measurements and that minimizes
a generalized version of the total variation (TV) seminorm—the continuous-domain
counterpart of �1 regularization. Our major finding (Theorem 1) is that the ex-
tremal points of this kind of recovery problem are nonuniform splines whose type
is matched to the regularization operator L. The powerful aspect is that the result
holds in full generality, as long as the problem remains convex. The only constraint is
that the linear inverse problem should be well-posed over the (very small) null space
of the regularization operator, which is the minimal requirement for any valid reg-
ularization scheme. In particular, Theorem 1 gives a theoretical explanation of the
well-documented observation that TV regularization—the simplest case of the present
theory with L = D (derivative operator)—tends to produce piecewise-constant solu-
tions [11, 41]. Recognizing the intimate connection between linear inverse problems
and splines is also helpful for discretization purposes because it provides us with a
parametric representation of the solution that is controlled by the regularization oper-
ator L. In that respect, our representer theorems extend some older results on spline
interpolation with minimum L1-norms, including the adaptive regression splines of
Mammen and van de Geer [38] and the functional analytic characterization of Fisher
and Jerome [27]. There is a connection as well with the work of Steidl, Didas, and
Neumann on splines and higher-order TV [48], although their formulation is strictly
discrete and restricted to the denoising problem.

2. Linear Inverse Problems: Current Status and Motivation. Our notational
convention is to use bold letters to denote ordinary vectors and matrices to distinguish
them from their infinite-dimensional counterparts; that is, functions (such as s) and
linear operators (such as L). Simply stated, the inverse problem is to recover a signal s
from a finite set of linear measurements y = y0(s)+n ∈ R

M , where n is a disturbance
term that is usually assumed to be small and independent of s. In most real-world
problems the unknown signal lives in the continuum so that it is appropriate to view
it as an element of some Banach space B. Then, by the assumption of linearity, there
exists a set of functionals νm ∈ B′ (the continuous dual of B) with m = 1, . . . ,M such
that the noise-free measurements are given by y0 = ν(s) = (〈ν1, s〉, . . . , 〈νM , s〉). The
measurement functionals νm are governed by the underlying physics (forward model)
and assumed to be known. Since the signal s ∈ B is an infinite-dimensional entity
and the number of measurements is finite, the inverse problem is obviously ill-posed,
not to mention the fact that the true measurements y are typically only approximate
versions of y0 since they are corrupted by noise.

2.1. Finite-Dimensional Formulation. The standard approach for the resolu-
tion of such inverse problems is to select some finite-dimensional reconstruction space
V = span{ϕn}Nn=1 ⊂ B. Based on the (simplifying) assumption that s ∈ V , one then
converts the original noise-free forward model into the discretized version y0 = Ax,
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SPLINES AND TV REGULARIZATION 771

where x ∈ R
N represents the expansion coefficients of s in the basis {ϕn}Nn=1. Here,

A is the so-called sensing matrix of size (M ×N) whose entries are given by [A]m,n =
〈νm, ϕn〉.

The basic assumption made by the theory of compressed sensing is that there
exists a finite-dimensional basis (or dictionary) {ϕn}Nn=1 that “sparsifies” the class of
desired signals with the property that ‖x‖0 ≤ K0 for some fixed K0 which is (much)
smaller than N ; in other words, it should be possible to synthesize the signal exactly by
restricting the expansion to no more than K0 atoms in the basis {ϕn}Nn=1 [20, 23, 40].
The signal recovery is then recast as the constrained optimization problem

arg min
x∈RN

‖x‖1 s.t. ‖y −Ax‖22 ≤ ε2,(1)

where the minimization of the �1-norm promotes sparse solutions [49]. The role of
the right-hand side inequality is to encourage consistency between the noisy measure-
ments y and their noise-free restitution y0 = Ax. The popularity of (1) stems from
the fact that the theory of CS guarantees a faithful signal recovery from M > 2K0

measurements under strict conditions on A (i.e., restricted isometry) [7, 10, 19].
Instead of basing the recovery on the synthesis formula s =

∑
n xnϕn ∈ V , one can

adopt an alternative analysis or regularization point of view. To that end, one typically
assumes that s is discretized in some implicit “pixel” basis with expansion coefficients
s = (s1, . . . , sN ) ∈ R

N , where the sn are the samples of the underlying signal. The
corresponding system matrix (forward model) is denoted by H : RN → R

M . Given
some appropriate regularization operator L : RN → R

N ′
, the idea is then to exploit

the property that the transformed version of the signal, Ls, is sparse. This translates
into the optimization problem

arg min
s∈RN

‖Ls‖1 s.t. ‖y −Hs‖22 ≤ ε2,(2)

which is slightly more involved than (1). The two forms are equivalent only when N ′ =
N and L is invertible, the connection being A = HL−1. For computational purposes,
(2) is often converted into the equivalent unconstrained version of the problem

arg min
s∈RN

(‖y−Hs‖22 + λ‖Ls‖1
)
,(3)

where λ ∈ R
+ is an adjustable regularization parameter that needs to be tuned such

that ‖y − Hs‖22 = ε2. One of the preferred choices for L is the finite-difference
operator—or the discrete version of the gradient in dimensions higher than one. This
corresponds to the “TV” reconstruction method, which is widely used in applications
[3, 11, 30, 41].

The sparsity-promoting effect of these discrete formulations and the conditions
under which the expansion coefficients of the signal can be recovered are fairly well
understood [28, 54]. What is less satisfactory is the intrinsic interdependence between
the sparsity constraints and the choice of the appropriate reconstruction space, which
makes it difficult to deduce rates of convergence and error estimates relating to the
underlying continuous-domain recovery problem.

2.2. Infinite-Dimensional Formulation. Recently, Adcock and Hansen have ad-
dressed the above limitation by formulating an infinite-dimensional theory of CS [1].
The measurements are the same as before, but the unknown signal is now a function
s : Rd → R. For the purpose of illustration, we take d = 1 and s ∈ BV(R) with
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772 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

the property that such a function admits the (unique) expansion s =
∑

n wnψn in
the (properly normalized) Haar wavelet basis {ψn}. It is known that the condition
s ∈ BV(R) implies the inclusion of w = (wn) in weak-�1(Z)—a space that is slightly
larger than �1(Z) [12]. Conversely, one can force the inclusion in BV(R) by imposing
a bound on the �1-norm of these coefficients. If one further assumes that the signal
is sparse in the Haar basis, one can recast the reconstruction problem as

min
w∈�1(Z)

‖w‖1 s.t.

M∑
m=1

∣∣ym − 〈νm,
∑
n

wnψn〉
∣∣2 ≤ ε2,(4)

which is the infinite-dimensional counterpart of the synthesis formulation (1). The
key problem is to derive conditions on how to choose the νm to guarantee recovery of
wavelet coefficients up to a certain scale. This has been done in [1, 2], which means
that the issue of convergence is now reasonably well understood for the synthesis form
of the recovery problem.

In our framework, MD(R) is the space of functions on R of bounded (total)
variation, which is slightly larger than BV(R) because it also includes constant signals.
This allows us to close the circle by enforcing a regularization on the “true” TV of
the solution, which is associated with the derivative operator D = d

dx . This results in
the functional optimization problem

s = arg min
f∈MD(R)

TV(f) = ‖Df‖M s.t. ‖y− ν(f)‖22 =

M∑
m=1

∣∣ym − 〈νm, f〉
∣∣2 ≤ ε2,

(5)

which is the continuous-domain counterpart of (2). Now, the motivation for our
present theory is that (5) corresponds to a special case of Theorem 1 with L = D
and the closed compact convex set C ⊂ R

M being specified by the inequality on the
right-hand side of (5); that is, Cε(y) = {z ∈ R

M : ‖y − z‖22 ≤ ε2}. The key is that the
differentiation operator D is spline-admissible in the sense of Definition 1: Its causal
Green’s function is the Heaviside (or unit-step) function ρD(x) = �+(x) whose rate
of growth is n0 = 0, while its null space ND = span{p1} with p1(x) = 1 is composed
of all constant-valued signals. This implies that the extreme points of (5) necessarily
take the form

s(x) = b1 +

K∑
k=1

ak�+(x− xk)(6)

with K ≤M . This corresponds to a piecewise-constant signal with jumps of size ak at
the xk, as illustrated in Figure 1. The solution also happens to be a polynomial spline
of degree 0 with knots at the xk and the property that D{s} =

∑K
k=1 akδ(·−xk) = wδ,

which is a weighted sum of shifted Dirac impulses (the innovation of the spline),
as shown at the bottom of Figure 1. In view of Definition 2, the solution (6) can
also be described as a nonuniform L-spline with L = D. The remarkable aspect
of this result is that the parametric form (6) is universal, in the sense that it does
not dependent on the measurement functionals νm. To the best of our knowledge,
this is the first mathematical explanation of the well-known observation that TV
regularization tends to enforce piecewise-constant solutions. The other interesting
point is that one can interpret the solution as the best K-term representation of
the signal within an infinite-dimensional dictionary that consists of a constant signal
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SPLINES AND TV REGULARIZATION 773

a1

x1

s(x)

wδ(x) =
d

dx
s(x)

x

x

Fig. 1 Prototypical solution of a linear inverse problem with TV regularization. The signal is
piecewise-constant; in other words, it is a nonuniform L-spline with L = D (derivative
operator). The application of D uncovers the innovation wδ: The Dirac impulses are located
at the points of discontinuity (knots), while their height (weight) encodes the magnitude of
the corresponding jump.

p1 plus a continuum of shifted Green’s functions (i.e., {�+(· − τ)}τ∈R), making the
connection with the synthesis views (1) and (4) of the problem. Also, note that the
described sparsifying effect is much more dramatic than that of the finite-dimensional
setting since one is collapsing a continuum (integral representation) into a discrete
and finite sum.

We shall now show that the mechanism at play is very general and transposable
to a much broader class of regularization operators L and data-fidelity terms, as well
as to the multidimensional setting.

2.3. Road Map of the Paper. The remainder of this paper is organized as fol-
lows: After setting the notation, we present and discuss our main representer theorem
(Theorem 1) in section 3. We also provide a refined version for the simpler interpola-
tion scenario (Theorem 2). We then proceed with the review of primary applications
in section 4.

The mathematical tools for proving our results are developed in the second half of
the paper. The first enabling component is the tight connection between splines and
operators, which is the topic of section 5. In particular, we present an operator-based
method to synthesize a spline from its innovation, which requires the construction
of an appropriate right-inverse operator (Theorem 4). The existence of such inverse
operators is fundamental to the characterization of the native spaces associated with
our generalized TV (gTV) criterion (Theorem 5), as we show in section 6. The
actual proof of Theorems 1 and 2 is given in section 7. It relies on a preparatory
result (generalized Fisher–Jerome theorem) that establishes the impulsive form of the
solutions of some abstract minimization problem over the space M(Rd) of bounded
Borel measures.

We conclude the paper in section 8 with a brief discussion of open issues.
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774 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

3. Representer Theorems for Generalized Total Variation. Although we are
considering a finite number of measurements, we are formulating the reconstruction
problem in the continuous domain. This calls for a precise specification of the under-
lying functional setting.

3.1. Notation. The space of tempered distributions is denoted by S′(Rd), where
d gives the number of dimensions. This space is made of continuous linear functionals
μ : ϕ 	→ 〈μ, ϕ〉 acting on the Schwartz space S(Rd) of smooth and rapidly decaying
test functions on R

d [29, 33].
We shall primarily work with the space M(Rd) of regular, real-valued, countably

additive Borel measures on R
d, which is also known (by the Riesz–Markov theorem)

to be the continuous dual of C0(R
d): the Banach space of continuous functions on R

d

that vanish at infinity equipped with the supremum norm ‖ · ‖∞ [42, Chap. 6]. Since
S(Rd) is dense in C0(R

d), this allows us to define M(Rd) as

M(Rd) =

{
w ∈ S ′(Rd) : ‖w‖M = sup

ϕ∈S(Rd):‖ϕ‖∞=1

〈w,ϕ〉 <∞
}
,(7)

and also to extend the space of test functions to ϕ ∈ C0(R
d). The action of w will

be denoted by ϕ 	→ 〈w,ϕ〉 =
∫
Rd ϕ(x)w(x)dx, where the right-hand side represents

the Lebesgue integral of ϕ with respect to the underlying measure.1 The bottom line
is that M(Rd) is the Banach space associated with the norm ‖ · ‖M that returns the
“total variation” of the measure that specifies w.

Two key observations in relation to our goal are as follows:
1. The compatibility of the L1 and TV norms, with the former being stronger

than the latter. Indeed, ‖f‖L1(Rd) = ‖f‖M for all f ∈ L1(R
d).

2. The inclusion of Dirac impulses in M(Rd), but not in L1(R
d). Specifically,

δ(· − x0) ∈ M(Rd) for any fixed offset x0 ∈ R
d with 〈δ(· − x0), ϕ〉 = ϕ(x0)

for all ϕ ∈ C0(R
d).

We shall monitor the algebraic rate of growth/decay of (ordinary) functions of
the variable x ∈ R

d by verifying their inclusion in the Banach space

L∞,α0(R
d) = {f : Rd → R s.t. ‖f‖∞,α0 < +∞},(8)

where
‖f‖∞,α0 = ess sup

x∈Rd

(|f(x)|(1 + ‖x‖)−α0
)

with α0 ∈ R. For instance, xm = xm1
1 · · ·xmd

d ∈ L∞,α0(R
d) for α0 ≥ |m| = m1 +

· · ·+md and m ∈ N
d.

A linear operator whose output is a function is represented with a roman capital
letter (e.g., L). The action of L on the signal s is denoted by s 	→ L{s}, or Ls for
short. Such an operator is said to be shift-invariant if it commutes with the shift
operator s 	→ s(· − x0), that is, if L{s(· − x0)} = L{s}(· − x0) for any admissible
signal s and x0 ∈ R

d.

3.2. Main Result on the Optimality of Splines. Since the solution is regularized,
the constrained minimization is performed over some native spaceML(R

d) that is tied
to some admissible differential operator L, such as D, D2 (second derivative), or Δ
(Laplacian) for d > 1.

1The use of w(x)dx in the integral is a slight abuse of notation when the measure is not absolutely
continuous with respect to the Lebesgue measure.
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SPLINES AND TV REGULARIZATION 775

Definition 1 (spline-admissible operator). A linear operator L : ML(R
d) →

M(Rd), where ML(R
d) ⊃ S(Rd) is an appropriate subspace of S ′(Rd), is called spline-

admissible if
1. it is shift-invariant;
2. there exists a function ρL : Rd → R of slow growth (the Green’s function of

L) such that L{ρL} = δ, where δ is the Dirac impulse. The rate of polynomial
growth of ρL is n0 = inf{n ∈ N : ρL ∈ L∞,n(R

d)};
3. the (growth-restricted) null space of L,

NL = {q ∈ L∞,n0(R
d) : L{q} = 0},

has the finite dimension N0 ≥ 0.

The native space of L, ML(R
d), is then specified as

ML(R
d) = {f ∈ L∞,n0(R

d) : ‖Lf‖M <∞}.(9)

This is the largest function space for which the gTV

gTV(f) = ‖Lf‖M
is well defined under the finite-dimensional null-space constraint

‖Lf‖M = 0 ⇔ f ∈ NL for any f ∈ ML(R
d).

This also means that gTV is only a seminorm on ML(R
d). However, it can be turned

into a proper norm by factoring out the null space of L. We rely on this property and
the finite dimensionality of NL to prove that ML(R

d) is a bona fide Banach space
(see Theorem 5).

Having set the functional context, we now state our primary representer theorem.

Theorem 1 (gTV optimality of splines for linear inverse problems). Let us as-
sume that the following conditions are met:

1. The regularization operator L : ML(R
d) → M(Rd) is spline-admissible in the

sense of Definition 1.
2. The linear measurement operator ν : f 	→ ν(f) =

(〈ν1, f〉, . . . , 〈νM , f〉) maps

ML(R
d) → R

M and is weak*-continuous on ML(R
d) =

(
CL(R

d)
)′
.

3. The recovery problem is well-posed over the null space of L: ν(q1) = ν(q2) ⇔
q1 = q2 for any q1, q2 ∈ NL.

Then the extremal points of the general constrained minimization problem

β = min
f∈ML(Rd)

‖Lf‖M s.t. ν(f) ∈ C,(10)

where C is any (feasible) convex compact subset of RM , are necessarily nonuniform
L-splines of the form

s(x) =

K∑
k=1

akρL(x− xk) +

N0∑
n=1

bnpn(x)(11)

with parameters K ≤ M , {xk}Kk=1 with xk ∈ R
d, a = (a1, . . . , aK) ∈ R

K , and

b = (b1, . . . , bN0) ∈ R
N0 . Here, {pn}N0

n=1 is a basis of NL and L{ρL} = δ so that

β = ‖Ls‖M =
∑K

k=1 |ak| = ‖a‖1. The full solution set of (10) is the convex hull of
those extremal points.

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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776 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

Theorem 1 is a powerful existence result that points toward the universality of
nonuniform L-spline solutions. The key property here is L{s} =

∑K
k=1 akδ(· − xk),

which follows from conditions 1–3 in Definition 1 and is consistent with the more de-
tailed characterization of splines presented in section 5. For the time being, it suffices
to remark that these splines are smooth (i.e., infinitely differentiable) everywhere,
except at their knot locations {xk}.

Although the extremal problem is defined over a continuum, the remarkable out-
come is that the problem admits solutions that are intrinsically sparse, with the level
of sparsity being measured by the minimum number K of required spline knots. In
particular, this explains why the solution of a problem with a TV/L1-type constraint
on the derivative (resp., the second derivative) is piecewise constant (resp., piecewise
linear when L = D2) with breakpoints at xk. The other pleasing aspect is the direct
connection between the functional concept of gTV and the �1-norm of the expansion
coefficients a.

We observe that the solution is made up of two components: an adaptive one that
is specified by {xk} and a, and a linear regression term (with expansion coefficients
b) that describes the component in the null space of the operator. Since b does not
contribute to ‖Ls‖M, the optimization tends to maximize the contribution of the
null-space component. The main difficulty in finding the optimal solution is that K
and (xk) are problem-dependent and unknown a priori.

We mentioned in section 2.2 that the seminorm ‖Df‖M yields the classical TV
of a function in one dimension. Unfortunately, there is no such direct connection for
d > 1, the reason being that the multidimensional gradient ∇ is not spline-admissible
because it is a vector operator. Instead, as a proxy for the popular TV of Rudin
and Osher [41], we suggest using the (fractional) Laplacian seminorm ‖(−Δ)γ/2f‖M
with γ ≥ d, which is endowed with the same invariance and null-space properties.
According to Theorem 1, such a γth-order regularization results in extremal points
that are nonuniform polyharmonic splines [21, 37].

3.3. Connection with Unconstrained Problem. The statement in Theorem 1
is remarkably general. In particular, it covers the generic regularized least-squares
problem

fλ = arg min
f∈ML(Rd)

(
M∑

m=1

|ym − 〈νm, f〉|2 + λ‖Lf‖M
)
,(12)

which is commonly used to formulate linear inverse/CS problems [6, 9, 19, 23, 26].
The connection is obtained by taking C = {z ∈ R

M : ‖y − z‖22 ≤ ε2} = B(y; ε),
which is a ball of diameter ε centered on the measurement vector y = (y1, . . . , yM ).
Indeed, since the data-fidelity term is (strictly) convex, the extreme points sε of (10)
saturate the inequality such that ‖y − ν(sε)‖22 = ε2 and gTV is minimized with
α = α(ε) = ‖Lsε‖M. In the unconstrained form (12), the selection of a fixed λ ∈ R

+

results in a particular value of the data error ‖y − ν(fλ)‖22 = ε′(λ) with the optimal
solution fλ = sε′ having the same TV as if we were looking at the primary problem
(10) with C = B(y; ε′).

To gain further insights into the optimization problem (12), we can look at two
limit cases. When λ → ∞, the solution must take the form f∞ = p ∈ NL so that
‖Lf∞‖M = 0. It then follows that ‖y − ν(f∞)‖22 ≤ ‖y‖2 < ∞. On the contrary,
when λ → 0, the minimization will force the data term ‖y − ν(f0)‖22 to vanish.
Theorem 1 then ensures the existence of a nonuniform “interpolating” L-spline f0(x)
with ν(f0) = y and minimum gTV seminorm.
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SPLINES AND TV REGULARIZATION 777

3.4. Generalized Interpolation. In the latter interpolation scenario, the convex
set C reduces to the single point C = {y ∈ R

M}. This configuration is of special
theoretical relevance because it enables us to refine our upper bound on the number
K of spline knots.

Theorem 2 (generalized spline interpolant). Under assumptions 1–3 of Theorem
1, the extremal points of the (feasible) generalized interpolation problem

arg min
f∈ML(Rd)

‖Lf‖M s.t. ν(f) = y(13)

are nonuniform L-splines of the same form (11) as in Theorem 1, but with K ≤
(M −N0).

4. Application Areas. We first briefly comment on the admissibility conditions
in Theorem 1 and indicate that the restrictions are minimal. To the best of our
knowledge, the continuity of the measurement operator ν is a necessary requirement
for the mathematical analysis of any inverse problem. The difficulty here is that our
native space ML(R

d) = (CL(R
d))′ is nonreflexive, which forces us to rely on the

weak*-topology. The continuity requirement in Theorem 1 is therefore equivalent to
νm ∈ CL(R

d) for m = 1, . . . ,M , where the Banach structure of the predual space
CL(R

d) is laid out in Theorem 6. In particular, we refer to the norm inequality (25),
which suggests that condition 2 in Theorem 1 is met by picking νm ∈ L1,−n0(R

d)
where the latter is the Banach space associated with the weighted L1-norm

‖f‖L1,−n0
=

∫
Rd

|f(x)|(1 + ‖x‖)n0dx.(14)

In fact, L1,−n0(R
d) is the predual of the space L∞,n0(R

d) defined by (8), which implies

that ML(R
d) =

(
CL(R

d)
)′ ⊂ (

L1,−n0(R
d)
)′

= L∞,n0(R
d). The condition νm ∈

L1,−n0(R
d) is a mild algebraic decay requirement that turns out to be satisfied by the

impulse response of most physical devices. As for the requirement that the inverse
problem is well defined over the null space of L (condition 3), it a prerequisite to the
success of any regularization scheme; otherwise, there is simply no hope of turning
an ill-posed problem into a well-posed one. For instance, in the introductory example
with classical TV regularization, the constraint is that ν should have at least one
component νm such that 〈νm, 1〉 �= 0 which, again, is a very mild requirement.

Next, we discuss examples of signal recovery that are covered by Theorems 1
and 2. The standard setting is that one is given a set of noisy measurements y =
ν(s) + “noise” of an unknown signal s and wants to recover s from y based on the
solution of (12), or some variant of the problem involving some other (convex) data
term—the most favorable choice being the log likelihood of the measurement noise.
We shall then close the discussion section by briefly making the connection with a
class of inverse problems in measure space; that is, the case L = Identity.

4.1. Interpolation. The task here is to reconstruct a continuous-domain sig-
nal from its (possibly noisy) nonuniform samples {s(xm)}Mm=1, which is achieved by
searching for the function s : Rd → R that fits the samples while minimizing ‖Ls‖M.
This corresponds to the problem setting in Theorem 1 with νm = δ(· − xm) and
C = B(y; ε), where y denotes the measurement vector. Hence, the admissibility
condition νm ∈ CL(R

d) is equivalent to (L−1
φ )∗{δ(· − xm)} = gφ(xm, ·) ∈ C0(R

d),
where the boundedness is ensured by the stability condition in Theorem 4. The more
technical continuity requirement is achieved when ρL is continuous (Hölder exponent
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778 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

r0 > 0). This happens when the order of the differential operator is greater than one,
which seems to exclude2 simple operators such as D (piecewise-constant approxima-
tion). This limitation notwithstanding, our theoretical results are directly applicable
to the problems of adaptive regression splines [38] with L = DN , the construction
of shape-preserving splines [35], as well as a whole range of variations including TV
denoising.

4.2. Generalized Sampling. The setting is analogous to the previous one, ex-
cept that the samples are now observed through a sampling aperture φ ∈ L1,−n0(R

d)
so that νm = φ(· − xm) [24, 50]. The function φ may, for example, correspond to the
point-spread function of a microscope. Then, the recovery problem is equivalent to a
deconvolution [18]. Since the measurements are obtained by integration of s against
an ordinary function νm ∈ L1,−n0(R

d), there is no requirement for the continuity
of ρL because of the implicit smoothing effect of φ. This means that essentially no
restrictions apply.

4.3. Compressed Sensing. The result of Theorem 1 is highly relevant to CS,
especially since the underlying L1/TV signal-recovery problem is formulated in the
continuous domain. We like to view (11) as the prototypical form of a piecewise-
smooth signal that is intrinsically sparse with sparsity K = ‖a‖0. The model also
conforms with the notion of a finite rate of innovation [56]. If we know that the
unknown signal s has such a form, then Theorem 1 suggests that we can attempt to
recover it from an M -dimensional linear measurement y = ν(s) by solving the opti-
mization problem (10) with C = B(y; ε), which is in agreement with the predominant
paradigm in the field. While the theorem states that M ≥ K, common sense dictates
that we should take M > Nfreedom, where Nfreedom = 2K + N0 is the number of
degrees of freedom of the underlying model. The difficulty, of course, is that a subset
of those parameters (the spline knots xk) induces a model dependency that is highly
nonlinear.

4.4. Inverse Problems in the Space of Measures. Some of the theoretical re-
sults of this paper are also of direct relevance for inverse problems that are formulated
in the space M(Rd) of measures [5]. The prototypical example is the recovery of the
location (with super resolution precision) of a series of Dirac impulses from noisy
measurements, which may be achieved through the continuous-domain minimization
of the TV of the underlying measure [8, 16, 22, 25]. The Fisher–Jerome theorem [27,
Theorem 1] as well as our extension for the unbounded domain R

d and arbitrary con-
vex sets (Theorem 7) support this kind of algorithm, as they guarantee the existence
of sparse solutions—understood as a sum of Dirac spikes—for this family of problems.

5. Splines and Operators. We now switch to the explanatory part of the pre-
sentation. The first important concept that is implicit in the statement of Theorems
1 and 2 is the powerful association between splines and operators, the idea being that
the selection of an admissible operator L specifies a corresponding type of splines
[46, 47], [55, Chapter 6].

Sorted by increasing complexity, the three types of operators that are of relevance
to us are: (i) ordinary differential operators, which are polynomials of the derivative
operator D = d

dx [13, 46, 52]; (ii) partial differential operators such as the Laplacian

Δ (or some polynomial thereof); and (iii) fractional derivatives such as Dγ or (−Δ)
γ
2

with γ ∈ R
+, whose Fourier symbols are (jω)γ and ‖ω‖γ , respectively [21, 51, 53].

2We can bypass this somewhat artificial limitation by replacing the ideal sampler by a quasi-ideal
sampling device that involves a mollified version of a Dirac impulse.
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SPLINES AND TV REGULARIZATION 779

It can be shown that all linear-shift-invariant operators of type (i) and all elliptic
operators of type (ii) are spline-admissible in the sense of Definition 1. This is also
known to be true for fractional derivatives and fractional Laplacians with γ ≥ d
[21, 51].

Let us mention that making sure that the null space of the operator L is finite-
dimensional is often nontrivial for d > 1. This is a fundamental aspect that is ad-
dressed in the L2 theory of radial basis functions and polyharmonic splines with the
definition of the appropriate native spaces [58, Chapter 10]. Here, we have chosen to
bypass some of these technicalities by including a growth restriction

(
i.e., the condi-

tion that q ∈ L∞,n0(R
d)
)
in the definition of NL. A fundamental property in that

respect is that the finite-dimensional null space of an LSI operator can only include
exponential polynomial components of the form xmej〈ω0,x〉, which correspond to a
zero of multiplicity at least |m| + 1 of the frequency response L̂(ω) at ω = ω0 (see
[55, Proposition 6.1, p. 118] and [32, section 6]).

Once it is established that L is spline-admissible, one can rely on the following
unifying distributional definition of a spline.

Definition 2 (nonuniform L-spline). A function s : Rd → R of slow growth (i.e.,
s ∈ L∞,n0(R

d) with n0 ≥ 0) is said to be a nonuniform L-spline if

L{s} =
∑
k

akδ(· − xk) = wδ,(15)

where (ak) is a sequence of weights and the Dirac impulses are located at the spline
knots {xk}.

The generalized function L{s} = wδ is called the innovation of the spline because
it contains the crucial information for its description: the positions {xk} of the knots
and the amplitudes (ak) of the corresponding discontinuities.

The one-dimensional brands of greatest practical interest are the polynomial
splines with L = Dm [15, 45] and the exponential splines [13, 46, 52] with L =
cmDm + · · ·+ c1D + c0I, where I = D0 denotes the identity operator. Their multidi-
mensional counterparts are the polyharmonic splines with L = (−Δ)γ/2 [21, 37] and
the Sobolev splines with L = (I − Δ)γ/2 for γ ≥ d [57]. The connection with the
theory of Sobolev spaces is that the Green’s functions of (−Δ)γ/2 (resp., (I−Δ)γ/2)
are the kernels of the Riesz (resp., Bessel) potentials [31].

For a constructive use of Definition 2, we also need to be able to resynthesize the
spline s from its innovation. In the case of our introductory example with L = D (see
Figure 1), one simply integrates wδ, which yields (6) (up to the integration constant
b1) owing to the property that D−1{δ(· − xk)}(x) =

∫ x

−∞ δ(τ − xk)dτ = �+(x − xk).
In principle, the same inversion procedure is applicable for the generic operator L and
amounts to substituting the δ distribution in (15) by the Green’s function ρL. The
only delicate part is the proper handling of the “integration constants” (the part of
the solution that lies in the null space of the operator), which is achieved through the
specification of N0 linear boundary conditions of the form 〈φn, s〉 = 0.

We now show that the underlying functionals φ = (φ1, . . . , φN0) can be incorpo-
rated in the specification of an appropriate right-inverse operator L−1

φ . Our construc-
tion requires that φ first be matched to a basis of NL so as to form a biorthogonal
system. We note that this is always feasible as long as the φn are linearly independent
with respect to NL. (An explicit construction is given in the proof of Theorem 2.)
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780 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

Definition 3. The pair (φ,p) = (φn, pn)
N0
n=1 is called a biorthogonal system for

NL ⊂ ML(R
d) if {pn}N0

n=1 is a basis of NL and the vector of “boundary” functionals
φ = (φ1, . . . , φN0) with φn ∈ N ′

L satisfy the biorthogonality condition φ(pn) = en,
where en is the nth element of the canonical basis.

The interest of such a system is that any q ∈ NL has a unique representation as
q =

∑N0

n=1〈φn, q〉pn with associated norm ‖φ(q)‖2.
The fundamental requirement for our formulation is the stability/continuity of

the inverse operator L−1
φ : M(Rd) → ML(R

d). Since ML(R
d) ⊂ L∞,n0(R

d) by
construction, we can control stability by relying on Theorem 3, whose proof is given
in Appendix A.

Theorem 3. The generic linear operator G : w 	→ f =
∫
Rd g(·,y)w(y)dy contin-

uously maps M(Rd) → L∞,α0(R
d) with α0 ∈ R if and only if its kernel g is measurable

and

ess sup
x,y∈Rd

(|g(x,y)| (1 + ‖x‖)−α0
)
<∞.(16)

This allows us to characterize the desired operator in term of its Schwartz kernel
(or generalized impulse response) gφ(x,y) = L−1

φ {δ(· − y)}(x).
Theorem 4 (stable right inverse of L). Let (φn, pn)

N0
n=1 be a biorthogonal system

for NL ⊂ ML(R
d) ⊂ L∞,n0(R

d). Then there exists a unique operator L−1
φ : ϕ 	→

L−1
φ ϕ =

∫
Rd gφ(·,y)ϕ(y)dy such that

LL−1
φ ϕ = ϕ (right-inverse property),(17)

φ(L−1
φ ϕ) = 0 (boundary conditions)(18)

for all ϕ ∈ S(Rd). The kernel of this operator is

gφ(x,y) = ρL(x− y)−
N0∑
n=1

pn(x)qn(y),(19)

with ρL such that LρL = δ and qn(y) = 〈φn, ρL(· − y)〉. Moreover, if gφ satisfies
the stability condition (16) with α0 = n0, then L−1

φ admits a continuous extension

M(Rd) → L∞,n0(R
d) with (17) and (18) remaining valid for all ϕ ∈ M(Rd).

The proof of Theorem 4 is given in Appendix B.
Since the choice of the N0 linear boundary functionals φn is essentially arbitrary,

there is flexibility in defining admissible inverse operators. The important ingredient
for our formulation is the existence of such inverses with the unconditional guarantee
of their stability (see Theorem 5 below).

To put this result into context, we now provide some illustrative examples. For

L = DN0 , we have that n0 = (N0 − 1), ρDN0 (x) =
x
n0
+

n0!
, and pn(x) = xn−1

(n−1)!

for n = 1, . . . , N0, where the polynomial basis is biorthogonal to φ with φn(x) =
(−1)(n−1)δ(n−1)(x). This (canonical) choice of boundary functionals then translates
into the construction of an inverse operator L−1

φ that imposes the vanishing of the
function and its derivatives at the origin. By applying (19) and recognizing the bino-
mial expansion of (x− y)n0 , we simplify the expression of the kernel of this operator
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SPLINES AND TV REGULARIZATION 781

as

gφ(x, y) =
(x− y)n0

+

n0!
−

n0∑
n=0

xn

n!

(−y)n0−n
+

(n0 − n)!

=

{
(x−y)n0

n0!
�(0,x](y), x ≥ 0,

− (x−y)n0

n0!
�(x,0](y), x < 0.

The crucial observation here is that the function gφ(x, ·) with x ∈ R fixed is compactly
supported and bounded. Moreover, ‖gφ(x, ·)‖∞ = |gφ(x, 0)| = xn0

n0!
so that gφ obvi-

ously satisfies the stability bound (16) with α0 = n0. By contrast, the condition fails
for the conventional shift-invariant inverse ϕ 	→ ρDN0 ∗ ϕ (n0-fold integrator), which
stresses the nontrivial stabilizing effect of the second correction term in (19). The
other important consequence of the correction is the vanishing of gφ(x, y) as y → ±∞
for any fixed x ∈ R

d, despite its leading term (x−y)n0
+ /n0! which does not decay (and

even grows) as y → −∞.
The primary usage of the inverse operators of Theorem 4 is in the resolution of

differential equations of the form

Ls = w s.t. φ(s) = (b1, . . . , bN0)(20)

for some w ∈ M(Rd). Indeed, by invoking the properties of L−1
φ and the biorthogo-

nality of (φ,p), we readily show that (20) admits a unique solution in ML(R
d) given

by

s = L−1
φ w +

N0∑
n=1

bnpn.

For the particular case of the spline innovation wδ in Definition 2, we find that

s =
∑
k

akL
−1
φ {δ(· − xk)}+

N0∑
n=1

bnpn,

which, upon substitution of the kernel given by (19), results in a form that is the
same as (11) in Theorem 1 modulo some adjustment of the constants bn.

6. Native or Generalized Beppo-Levi Spaces. The search for the solution of
our optimization problem is performed over the native space ML(R

d) defined by (9),
which is the largest space over which our gTV regularization functional is well defined.
The delicate aspect is thatML(R

d) is specified in terms of a seminorm, in analogy with
the definition of the classical Beppo-Levi spaces of order n ∈ N and exponent p ≥ 1,
written as Bp,n(R

d) = {f ∈ S ′(Rd) : ‖∂mf‖Lp < ∞ for all multi-indices |m| = n}
[17, 34]. Hence, in one dimension, the proposed definition of MDn(R) is a slight
extension of B1,n(R). In higher dimensions, it can be shown3 that Bp,2n(R

d) = {f ∈
L∞,2n−1(R

d) : ‖(−Δ)nf‖Lp <∞}, so that there also exists a close connection between
B1,2n(R

d) and M(−Δ)n(R
d).

The crucial point for our formulation is that ML(R
d) also happens to be a com-

plete normed (or Banach) space when equipped with the proper direct-sum topology.
We shall now make this structure explicit with the help of the inverse operators defined
in Theorem 4. Since the principle is similar to the characterization of the Beppo-Levi
spaces, we shall also refer to ML(R

d) as a generalized Beppo-Levi space.

3The argument is that the only functions that are harmonic and of slow growth are polynomials.
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782 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

Theorem 5 (Banach-space structure of native space). Let L be a spline-admis-
sible operator, ML(R

d) its native space defined by (9), and (φ,p) some biorthogonal
system for its null space NL. Then the following equivalent conditions hold:

1. The right-inverse operator L−1
φ specified by Theorem 4 isometrically maps

M(Rd) → ML(R
d) ⊂ L∞,n0(R

d), while its kernel necessarily fulfills the sta-
bility condition

Cφ = sup
x,y∈Rd

(|gφ(x,y)| (1 + ‖x‖)−n0
)
<∞.(21)

2. Every f ∈ ML(R
d) admits a unique representation as

f = L−1
φ w + p,

where w = L{f} ∈ M(Rd) and p =
∑N0

n=1〈f, φn〉pn ∈ NL.
3. ML(R

d) is a Banach space equipped with the norm

‖f‖L,φ = ‖Lf‖M + ‖φ(f)‖2.(22)

Proof. As preparation, we define a subset of ML(R
d) as

ML,φ(R
d) = {f ∈ ML(R

d) : φ(f) = 0}.(23)

Since the boundary conditions φ(f) = 0 are linear,ML,φ(R
d) is clearly a vector space.

We now show that it is a Banach space when equipped with the norm ‖·‖L = ‖L{·}‖M.
By definition, ‖ · ‖L is a seminorm on ML(R

d), meaning that it fulfills the properties
of a norm, except for the unicity condition. To establish the latter on ML,φ(R

d), we
consider f ∈ ML,φ(R

d) such that ‖f‖L = 0, which is equivalent to f ∈ NL. Since
f ∈ ML,φ(R

d) (by hypothesis), we have that φ(f) = 0, from which we deduce that

f =
∑N0

n=1〈φn, f〉pn = 0, as expected. This proves that ML,φ(R
d) is isometrically

isomorphic to M(Rd) and, hence, a Banach space. Alternatively, one can also view
ML,φ(R

d) as a concrete transcription (or representative within the equivalence class)
of the abstract quotient space ML(R

d)/NL.

1. Existence and Stability of Inverse Operators. We have just revealed that L is
a bijective, norm-preserving mapping ML,φ(R

d) → M(Rd). This allows us to invoke
the bounded-inverse theorem, which ensures the existence and boundedness (here, an
isometry) of the inverse operator L−1 : M(Rd) → ML,φ(R

d). The relevant L−1 is
precisely the unique operator L−1

φ identified in Theorem 4, as it imposes the boundary

condition φ(L−1
φ w) = 0 for all w ∈ M(Rd). Finally, we use the same technique as in

the proof of Theorem 3 to establish the necessity of the stability condition (16) with
α0 = n0.

2. Direct Sum Decomposition. Since the system (φ,p) is biorthogonal, the op-

erator ProjNL
: f 	→ ∑N0

n=1〈φn, f〉pn is a continuous projection operator ML(R
d) →

NL(R
d). It follows that any element f ∈ ML(R

d) has a unique decomposition as
f = f1 + q, where q = ProjNL

{f} ∈ NL and f1 = (f − q) with φ(f1) = 0. This
last condition implies that f1 ∈ ML,φ(R

d) so that f1 has a unique representation as
f1 = L−1

φ w, where w = Lf1 = Lf ∈ M(Rd). Since ML,φ ∩ NL = {0}, this expresses

the structural property that ML(R
d) = ML,φ(R

d)⊕NL.

3. Identification of the Underlying Norm. Any element p ∈ NL is uniquely
characterized by its expansion coefficients φ(p) in the basis p. The same holds true
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SPLINES AND TV REGULARIZATION 783

for q = ProjNL
{f} ∈ NL with φ(q) = φ(f) for any f ∈ ML(R

d). Since ML,φ(R
d) and

NL are both Banach spaces, we can equip their direct sumML(R
d) with the composite

norm ‖f‖L,φ = ‖w‖M+ ‖φ(f)‖2, with the guarantee that the Banach-space property
is preserved.

For the converse implication, we simply identify ML,φ(R
d) as the closed subspace

of ML(R
d) with the property that ‖f‖L,φ = ‖Lf‖M.

The connection with the L-spline s of Definition 2 is that s ∈ ML(R
d) if and only

if the �1-norm of its spline weights a = (a1, . . . , aK) is finite. Indeed, we have that

‖Ls‖M = ‖wδ‖M =
∑K

k=1 |ak| = ‖a‖�1 , owing to the property that ‖δ(·−xk)‖M = 1.
We note that the choice of gTV is essential here since the simpler (and a priori

only slightly more restrictive) L1-norm regularization ‖Ls‖L1 would exclude the spline
solutions that are of interest to us because δ /∈ L1(R

d).

Our final ingredient is the identification of the predual space of ML(R
d), which

is denoted by CL(R
d).

Theorem 6 (predual of native space). Let (φ,p) be a biorthogonal system of
NL ⊂ L∞,n0(R

d) and CL,p(R
d) be the image of C0(R

d) by L∗ : C0(R
d) → CL,p(R

d).

Then ML =
(
CL(R

d)
)′
, where CL(R

d) = CL,p(R
d) ⊕ N ′

L with N ′
L = span{φn}N0

n=1.
CL(R

d) is a Banach space equipped with the norm

‖f‖′L,φ = ‖L−1∗
φ f‖∞ + ‖p(f)‖2,(24)

where L−1∗
φ =

(
L−1
φ

)∗
is the adjoint of L−1

φ . Moreover, there exists a constant C > 0
such that

‖f‖′L,φ ≤ C‖f‖L1,−n0
(25)

for any f ∈ L1,−n0(R
d).

The proof is given in Appendix C. The direct-sum decomposition in Theorem
6 is achieved by means of the operator ProjN ′

L
: f 	→ q =

∑N0

n=1〈pn, f〉φn with

‖q‖ = ‖p(f)‖2 = ‖p(q)‖2, which relies on the biorthogonality of (φ,p) to project
CL(Rd) onto N ′

L(R
d). This also means that CL,p(R

d) can be defined as CL,p(R
d) =

{f ∈ CL(R
d) : p(f) = 0}, in direct analogy with the definition of ML,φ(R

d) in (23).

7. Proof of Theorems 1 and 2. Our technique of proof will be to first establish
the optimality of innovation-type solutions of the form that appear in Definition 2
for general linear inverse problems defined on M(Rd) (Theorem 7) and to then trans-
fer the result to ML(R

d) with the help of the stable inverse operators specified in
Theorem 4. The first step is achieved by generalizing an earlier result by Fisher and
Jerome [27].

Let H be the direct sum of M(Rd) =
(
C0(R

d)
)′

and a finite-dimensional space
N equipped with some norm ‖ · ‖N . The generic element of H is f = (w, p) with
‖f‖H = ‖w‖M + ‖p‖N .

Theorem 7 (generalized Fisher–Jerome theorem). Let F : H → R
M with M ≥

N0 = dim(N ) be a weak*-continuous linear map such that

B‖p‖N ≤‖F (0, p)‖2(26)

for some constant B > 0 and every p ∈ N . Let C be a convex compact subset of
R

M such that U = F−1(C) = {(w, p) ∈ H : F (w, p) ∈ C} is nonempty (feasibility
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784 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

hypothesis). Then,
V = arg min

(w,p)∈U
‖w‖M

is a nonempty, convex, weak*-compact subset of H with extremal points (wδ, p) of the
form

wδ =

K∑
k=1

akδ(· − xk)(27)

with K ≤M and xk ∈ R
d for k = 1, . . . ,K, and min(w,p)∈U ‖w‖M =

∑K
k=1 |ak|.

Theorem 7 is the most technical component of our formulation as it involves the
weak*-topology. The details of the proof are laid out in Appendix D together with a
precise definition of the underlying concepts.

The essence of Theorem 7 is very similar to the original Fisher–Jerome result [27,
Theorem 1], except for two crucial points: (i) the fact that they only consider measures
defined over a bounded domain Ω ⊂ R

d (or, by extension, on a compact metric space),
and (ii) the nature of the constraints which, in their case, is limited to coordinatewise
inequalities of the form z1,m ≤ [F (w, p)]m ≤ z2,m. These differences are substantial
enough to justify a new, self-contained proof. In particular, we believe that our
extension for functions defined on R

d (beyond the compact Hausdorff framework of
[27]) is essential for covering nonlocal operators such as fractional derivatives, and for
deploying Fourier-domain/signal-processing techniques.

Our primary constraint for the validity of Theorem 7 is the existence of the lower
bound (26). We now show that this property is implicit in the statement of the
hypotheses of Theorem 1.

Proposition 8. Let (φn, pn)
N0
n=1 be a biorthogonal system of NL ⊂ ML(R

d) such

that q =
∑N0

n=1〈φn, q〉pn for all q ∈ NL. Then condition 3 in Theorem 1 is equivalent
to the existence of a constant 0 < B such that

B‖q‖NL ≤ ‖ν(q)‖2 ∀q ∈ NL,(28)

with ‖q‖2NL
= ‖φ(q)‖22 =

∑N0

n=1 |〈φn, q〉|2.
While there are softer ways of establishing this equivalence, we have chosen an

explicit approach that also serves as background for the proof of Theorem 2.

Proof. Any q ∈ NL has a unique expansion q =
∑N0

n=1 cnpn with c = φ(q) and
‖q‖NL = ‖c‖2. The property that q is uniquely determined by its measurements
b = ν(q) is therefore equivalent to c also being the solution of the overdetermined
system Pc = b with

P = [ν(p1) · · · ν(pN0)].(29)

It is well known that such a system is solvable if and only if (PTP) is invertible and
that its (least-squares) solution is given by

c = (PTP)−1PTb.

This characterization then yields the norm estimate

‖q‖NL = ‖c‖2 ≤ σmax(P)

σ2
min(P)

‖ν(q)‖2,
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SPLINES AND TV REGULARIZATION 785

where σmin(P) = σmin(P
T ) and σmax(P) are the minimum and maximum singular

values of P, respectively. Finally, the invertibility of (PTP) is equivalent to σ2
min(P) =

λmin(P
TP) > 0, while the continuity assumption on ν ensures that σmax(P) < ∞.

The constant is then given by B = σ2
min(P)/σmax(P).

Proof of Theorem 1. Let (φ,p) be a biorthogonal system for NL. Then, by
Theorem 5, any function f ∈ ML(R

d) has a unique decomposition as f = L−1
φ w + p

with w = Lf ∈ M(Rd) and p ∈ NL. This allows us to interpret the measurement
process f 	→ ν(f) = 〈ν, f〉 as the linear map F : H → R

M such that

〈ν, f〉 = 〈ν,L−1
φ w〉 + 〈ν, p〉

= 〈L−1∗
φ ν, w〉+ 〈ν, p〉 = F (w, p).

We also know from Theorem 6 that L−1∗
φ is an isometry CL(R

d) → C0(R
d). Hence,

the weak*-continuity of ν : ML(R
d) → R

M is equivalent to the weak*-continuity of
F : H → R

M . The complementary lower bound is given by Proposition 8 as

B‖p‖ML,φ
≤‖ν(p)‖2 = ‖F (0, p)‖2.

With this new representation, the constrained minimization problem is equivalent to
the one considered in Theorem 7 with N = NL, which ensures that all extreme points
of the solution set are of the form (p, wδ) with wδ =

∑K
k=1 akδ(· − xk), K ≤ M ,

and xk ∈ R
d. Upon application of the (stable) right-inverse operator, this maps into

s = L−1
φ wδ + p, where p is a suitable component that is in the null space of the

operator. Finally, we use the explicit kernel formula (19) and the procedure outlined
at the end of section 5 to convert this representation into (11), which removes the
artificial dependence upon φ.

Proof of Theorem 2. From the proof of Proposition 8, we know that the minimal
singular value of the cross-product matrix P = [p1 · · ·pM ]T with pm = ν(pm) ∈ R

N0

is nonvanishing. The geometric implication is that span{p}Mm=1 = R
N0 . Since the

corresponding system is redundant, we can always identify a subset of these row vec-
tors that forms a basis of RN0 . Without loss of generality, we now assume that this
subset is {pm}N0

m=1 and that the corresponding submatrix P0 = [p1 · · ·pN0 ]
T is there-

fore invertible. In other words, we have identified a reduced vector of measurement
functionals ν0 = (ν1, . . . , νN0) that is linearly independent with respect to NL. This,
in turn, allows us to construct the boundary functional φ0 = P−1

0 ν0 that meets the
biorthogonal requirement φ0(pn) = P−1

0 ν0(pn) = P−1
0 pn = en. In effect, this yields

a biorthogonal system with the property that N ′
L = span{νn}N0

n=1 ⊂ M′
L(R

d).
Coming back to our interpolation problem, we define y = (y0,y1) with y0 =

(y1, . . . , yN0) ∈ R
N0 and y1 ∈ R

M−N0 . Due to the biorthogonality of (φ0,p), the
unique element q0 ∈ NL such that ν0(q0) = P0φ0(q0) = y0 is given by

q0 =

N0∑
n=1

bnpn

with b = (b1, . . . , bN0) = P−1
0 y0. The other ingredient is Theorem 5, which ensures

that any f ∈ ML(R
d) has a unique decomposition as f = L−1

φ0
w+ q with q ∈ NL and

w ∈ M(Rd). Now, the crucial property is that the boundary conditions φ0(L
−1
φ0
w) = 0

imply that ν0(L
−1
φ0
w) = 0 for all w ∈ ML(R

d). This allows us rewrite the solution of
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786 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

our generalized interpolation problem as f = L−1
φ0
w1 + q0, where

w1 = arg min
w∈M(Rd)

‖w‖M s.t. ν1(L
−1
φ0
w) = y1 − ν1(q0).

The result then follows from the continuity of L−1
φ0

and the reduced version of Theorem

7 with N = {0}.

8. Further Theoretical and Computational Issues. The analogy with the finite-
dimensional theory of CS raises the following fundamental theoretical question: Is it
possible to provide conditions on the measurement operator ν such that a perfect
recovery is possible for certain classes of signals, in particular, splines with a given
number of knots? This is an open topic that calls for further investigation. Be-
cause the problem is formulated in the continuum, we suspect that it is much more
difficult—if not impossible—to identify conditions that ensure unicity.

While the reconstruction problem in Theorem 1 is formulated in analysis form
(i.e., minimization of ‖Ls‖M), the interesting outcome is that the solution (11)
is given in synthesis form, with the unusual twist that the underlying dictionary
{ρL(· − τ )}τ∈Rd of basis functions is infinite-dimensional and not even countable.
This interpretation suggests a natural discretization, which is to select a finite sub-
set of equally-spaced functions {ρL(· − τn)}Nn=1 with N � M and to rely on linear
programming for ε = 0, or quadratic programming for ε > 0, or some other convex
optimization technique to numerically solve the underlying �1-minimization problem.
We have preliminary evidence that this approach is feasible. In particular, we have
considered the generalized interpolation scenario covered by Theorem 2 and observed
that the simplex algorithm performs well in the sense that it always returns a nonuni-
form L-spline with a number of knots K ≤ (M −N0). The key theoretical challenge is
now to establish the convergence of such a scheme as the sampling step gets smaller.

Since the space that is spanned by the null-space components of L and the integer
shifts of ρL is the space of cardinal L-splines (see [52] for the generic case of an ordinary
differential operator), one may also consider an alternative discretization that uses
the corresponding B-spline basis functions, which are much better conditioned than
Green’s functions. This would bring us back to a numerical problem that is very
similar to (3), with the advantage of maintaining direct control over the discretization
error. In the case of a pure denoising problem, another possible option is to run the
taut-string algorithm [38, 44] or some appropriate variation thereof.

At any rate, we believe that the issues of the proper discretization of the re-
construction problem (12) and the development of adequate numerical schemes are
important research topics in their own right. For the cases where the solution is
not unique, Theorem 1 also suggests a new computational challenge: the design of
a minimization algorithm that systematically converges to an extremal point of the
problem, the best solution being the spline that exhibits the minimal number of knots
K = ‖a‖0.

Appendix A. Proof of Theorem 3.

Proof. First, we establish the sufficiency of the stability condition by consider-
ing the signal f(x) = G{w}(x) =

∫
Rd g(x,y)w(y)dy, where w ∈ M(Rd), and by
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SPLINES AND TV REGULARIZATION 787

constructing the estimate

|f(x)|(1 + ‖x‖)−α0 = (1 + ‖x‖)−α0

∣∣∣∣∫
Rd

g(x,y)w(y)dy

∣∣∣∣
≤ (1 + ‖x‖)−α0 ess sup

y∈Rd

|g(x,y)| ‖w‖M,

which implies that

‖f‖∞,α0 = ‖G{w}‖∞,α0 ≤
(
ess sup
x,y∈Rd

|g(x,y)| (1 + ‖x‖)−α0

)
‖w‖M

for all w ∈ M(Rd). In doing so, we have shown that

‖G‖ ≤ ess sup
x,y∈Rd

|g(x,y)| (1 + ‖x‖)−α0 <∞.

To prove necessity, we use the property that g(x,y) = G{δ(· − y)}(x), where the
shifted Dirac impulse δ(· − y) is included in M(Rd) with ‖δ(· − y)‖M = 1. We then
observe that, for each y ∈ R

d,

‖G{δ(· − y)}‖∞,α0 = ess sup
x∈Rd

(1 + ‖x‖)−α0 |g(x,y)|.

Moreover, G being bounded, we have that

‖G{δ(· − y)}‖∞,α0 ≤ ‖δ(· − y) ‖M ‖G‖ = ‖G‖,

which means that

ess sup
x∈Rd

(1 + ‖x‖)−α0 |g(x,y)| ≤ ess sup
x,y∈Rd

(1 + ‖x‖)−α0 |g(x,y)| ≤ ‖G‖ <∞.

As we already know that the inequality holds in the other direction as well, we obtain

‖G‖ = ess sup
x,y∈Rd

|g(x,y)| (1 + ‖x‖)−α0 ,

which concludes the proof.

Appendix B. Proof of Theorem 4.

Proof. We first establish the properties of the operator on Schwartz space of
smooth and rapidly-decreasing signals S(Rd) to avoid any technical problem related to
splitting sums and interchanging integrals. We also rely on Schwartz’s kernel theorem,
which states the equivalence between the continuous linear operators G : S(Rd) →
S ′(Rd) and their Schwartz kernels (or general impulse responses) g ∈ S ′(Rd × R

d),
meaning that two such operators are identical if and only if their kernels are equal—in
the sense of distributions.

Using the explicit representation of gφ together with L{ρL} = δ (Dirac distribu-
tion) and L{pm} = 0 for m = 1, . . . , N0, we then easily show that

LL−1
φ {ϕ} = ϕ
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788 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

for all ϕ ∈ S(Rd). Next, we invoke the biorthogonality property 〈φm, pn〉 = δm−n

(Kronecker delta) to evaluate the inner product of (19) with φm as

〈φm,L−1
φ {ϕ}〉 = 〈φm, ρL ∗ ϕ〉 −

N0∑
n=1

〈φm, pn〉〈qn, ϕ〉

= 〈φm, ρL ∗ ϕ〉 − 〈qm, ϕ〉
= 〈φm, ρL ∗ ϕ〉 − 〈φm, ρL ∗ ϕ〉 = 0,

which proves that the boundary conditions are satisfied.
Let us now consider another operator L−1 that is also a right inverse of L. Clearly,

the results of the action of the two operators can only differ by a component that is
in the null space of L, so that (L−1ϕ − L−1

φ ϕ) = q ∈ NL. Since (φ,p) forms a
biorthogonal system, q is uniquely determined by φ(q), which implies that the right-
inverse operator that imposes the condition φ(L−1ϕ) = 0 is unique.

Next, we define C = supx,y∈Rd (|gφ(x,y)| (1 + ‖x‖)−n0) < ∞ and extract the
generic continuity bound

‖L−1
φ ϕ‖∞,n0 ≤ C‖ϕ‖M

from the the proof of Theorem 3. This allows us to extend the domain of the operator
from S(Rd) to M(Rd). We can do likewise for the right-inverse property and the
boundary conditions by invoking the continuity of L−1

φ and φ.
Alternatively, one can establish this extension indirectly by identifying a specific

Banach space ML,φ(R
d) and then by showing that it is the bijective image of M(Rd)

by L−1
φ (see the proof of statement 1 in Theorem 5, which also nicely settles the issue

of stability).

Appendix C. Proof of Theorem 6.

Proof. First, we prove that CL,p(R
d) is isometrically isomorphic to C0(R

d). For
any ϕ ∈ C0(R

d), L∗ϕ = 0 implies that ϕ ∈ NL∗ ∩ C0(R
d) = {0} (since the basis

functions of the null space do not vanish at infinity); i.e., ϕ = 0. L∗ is therefore
injective, and hence bijective since it is surjective C0(R

d) → CL,p(R
d) by definition.

In particular, this implies that the adjoint L−1∗
φ of the operator L−1

φ defined by (19) is

the inverse of L∗ from CL,p(R
d) to C0(R

d). Therefore, CL,p(R
d) inherits the Banach-

space structure of C0(R
d) for the norm ‖L−1

φ f‖∞.

If f ∈ CL,p(R
d), then f = L∗ϕ with ϕ ∈ C0(R

d) and 〈f, p〉 = 〈ϕ,Lp〉 = 0 for
any p ∈ NL. The unique element of N ′

L orthogonal to NL is 0 so that the sum
CL,p(R

d) ⊕ N ′
L is direct. N ′

L is a (finite-dimensional) Banach space for the norm
‖p(f)‖2, implying that CL(R

d) = CL,p(R
d)⊕N ′

L is a Banach space for (24).
Next, we recall that L−1

φ is continuous and bijective from ML,φ(R
d) to M(Rd)

(Theorem 5), while we have just shown that its adjoint is continuous and bijective

from CL,p(R
d) to C0(R

d). Knowing that
(
C0(R

d)
)′

= M(Rd), this implies that(
CL,p(R

d)
)′

= ML,φ(R
d). Finally, we have

(CL(R
d))′ = (CL,p(R

d)⊕N ′
L)

′ = (CL,p(R
d))′ ⊕ (N ′

L)
′ = ML,φ(R

d)⊕NL = ML(R
d),

as expected.
To establish the weighted L1-norm inequality, we first observe that the hypotheses

f ∈ L1,−n0(R
d) and pn ∈ L∞,n0(R

d) imply that |〈f, pn〉| ≤ ‖pn‖∞,n0 ‖f‖L1,−n0
(by

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

2/
17

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



SPLINES AND TV REGULARIZATION 789

the Hölder inequality). Likewise, using the stability bound (21), we obtain

|L−1∗
φ {f}(y)| =

∣∣∣∣∫
Rd

gφ(x,y) f(x)dx

∣∣∣∣
≤
∫
Rd

Cφ(1 + ‖x‖)n0 |f(x)|dx = Cφ‖f‖L1,−n1 ,

which yields ‖L−1∗
φ {f}‖∞ ≤ Cφ‖f‖L1,−n1 . The desired result is then obtained from

the summation of these individual bounds.

Appendix D. Proof of Theorem 7. The proof follows the same steps as the
original one of Fisher and Jerome [27, Theorem 1], but, it differs in its assumptions
and technicalities (i.e., the consideration of the noncompact domain R

d and the use
of explicit bounds). We have done our best to make it self-contained.

As preparation, we recall that the weak*-topology on M(Rd) =
(C0(Rd)

)′
is the

locally convex topology associated with the family of seminorms pϕ(w) = |〈w,ϕ〉|
for ϕ ∈ C0(R

d). In particular, a sequence of elements wn ∈ M(Rd) converges to 0
for the weak*-topology if and only if 〈wn, ϕ〉 → 0 for every ϕ ∈ C0(R

d). A subset
of M(Rd) is said to be weak*-closed (weak*-compact, respectively) if it is closed
(compact, respectively) for the weak*-topology. We shall use Propositions 9 and 10,
which are consequences of the Banach–Alaoglu theorem and its variations [43, p. 68].

Proposition 9. Compactness in the weak*-topology of M(Rd).
• For every α > 0, the set Bα = {w ∈ M(Rd) : ‖w‖M ≤ α} is weak*-compact

in M(Rd).
• If (wn) is a sequence in M(Rd), bounded for the TV-norm, then we can

extract a subsequence that converges in M(Rd) for the weak*-topology.

The second point of Proposition 9 is valid because the space C0(R
d) is separable.

These properties also carry over to the Banach space H = M(Rd)⊕N =
(
C0(R

d)⊕
N ′)′, which is endowed with the corresponding weak*-topology: A sequence (wn, pn)
in H vanishes for the weak*-topology if and only if wn vanishes for the weak*-topology
of M(Rd) and ‖pn‖N → 0.

Proposition 10. Compactness in the weak*-topology of H.
• For every α1, α2 > 0, the set Bα1,α2 = {(w, p) ∈ H : ‖w‖M ≤ α1, ‖p‖N ≤
α2} is weak*-compact in H.

• If (wn, pn) is a sequence in H such that ‖wn‖M+ ‖pn‖N is bounded, then we
can extract a subsequence that converges in H for the weak*-topology.

Proof of Theorem 7. The proof is divided into two parts. First, we show that V
is a nonempty, convex, and weak*-compact subspace of H. This allows us to specify
V by means of its extremal points via the Krein–Milman theorem. Second, we show
that the extremal points have the proposed form. We set β = inf(w,p)∈U‖w‖M.

Part I: V Is Nonempty, Convex, and Weak*-Compact. Since F is weak*-
continuous, it is also continuous H → R

M in the topology of H. Hence, there exists
a constant A > 0 such that

‖F (w, p)‖2 ≤ A(‖w‖M + ‖p‖NL).(30)

Let us consider a sequence (wn, pn)n∈N in U such that ‖wn‖M decreases to β. In
particular, ‖wn‖M is bounded above by ‖w0‖M. We set M = maxx∈C‖x‖. Using,
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790 MICHAEL UNSER, JULIEN FAGEOT, AND JOHN PAUL WARD

respectively (26), (30), and ‖F (wn, pn)‖2 ≤ M (since (wn, pn) ∈ U), we deduce the
inequalities

‖pn‖N ≤ 1

B
‖F (0, pn)‖2 =

1

B
‖F (wn, pn)− F (wn, 0)‖2

≤ 1

B
(‖F (wn, pn)‖2 + ‖F (wn, 0)‖2)

≤ 1

B
(M +A‖wn‖M) ≤ 1

B
(M +A‖w0‖M),(31)

which shows that pn is bounded. We can then extract a sequence (wsn , psn) from
(wn, pn) that converges to (w∞, p∞) ∈ H for the weak*-topology (by Proposition 10).
Since ‖wn‖ → β and ‖wsn‖ is a subsequence, it must also converge to β.

On the other hand, the set U = F−1(C) is weak*-closed in H, as the preimage
of a closed set by a weak*-continuous function F . Consequently, (w∞, p∞) is the
weak*-limit of a sequence of elements in U . We therefore deduce that (w∞, p∞) ∈ U ,
so that ‖w∞‖M ≥ β. In light of the previous inequality, this yields ‖w∞‖M = β,
which proves that V is not empty.

In addition to being weak*-closed, the set U = F−1(C) is convex because C is
convex and F linear. Likewise, V = U ⋂{(w, p) : ‖w‖M ≤ β} is convex and weak*-
closed as the intersection of two sets with the same property. Finally, for (w, p) ∈ V ,
we show that ‖p‖N ≤ M+A‖w‖M

B = M+Aβ
B = γ, based on the same inequalities as in

(31). Therefore, we have

V ⊂ {(w, p) ∈ H : ‖w‖M ≤ β, ‖p‖N ≤ γ},

where the set on the right-hand side is weak*-compact, due to Proposition 10. Since
any weak*-closed set included in a weak*-compact set is necessarily weak*-compact,
this shows that V is weak*-compact.

We are now in the position to apply the Krein–Milman theorem [43, p. 75] to the
convex weak*-compact set V ⊂ H, which tells us that “V is the closed convex hull of
its extreme points in H endowed with the weak*-topology.” This leads us to the final
part of the proof, which is the characterization of those extreme points.

Part II: The Extreme Points of V Are of the Form (27). We shall prove that a
necessary condition for (w, p) to be an extreme point of V is that there are no disjoint
Borelian sets E1, . . . , EM+1 ⊂ R

d such that w(Em) �= 0 for m = 1, . . . ,M + 1. The
only elements ofM(Rd) satisfying this condition are precisely those described by (27).

We shall proceed by contradiction and assume that there exist disjoint sets E1, . . . ,
EM+1 such that w(Em) �= 0 for all m.

We denote the restriction of w to Em as wm = w�Em . We also define E =
R

d\⋃mEm, and w̄ = w�E with ‖w‖M = β. For m = 1, . . . ,M + 1, we set ym =
F (wm, p) ∈ R

M . Since any collection of (M +1) vectors in R
M is linearly dependent,

there exists (cm)1≤m≤M+1 �= 0 such that
∑M+1

m=1 cmym = 0.

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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Let μ =
∑M+1

m=1 cmwm ∈ M(Rd) and ε ∈ (−εmax, εmax) with εmax = 1/maxm |cm|,
so that (1 + εcm) > 0 and (1 − εcm) > 0 for all m. By construction, we have that

F (μ, p) =

M+1∑
m=1

cmF (wm, p) =

M+1∑
m=1

cmym = 0(32)

and, therefore, that F (w ± εμ, p) = F (w, p). Hence,

(w ± εμ, p) ∈ U .

Moreover, w ± εμ = w̄ +
∑M+1

m=1 (1 ± εcm)wm. Since the measures w̄, w1, . . . , wM+1

have disjoint supports and (1± εcm) > 0, we have

‖w ± εμ‖M = ‖w̄‖M +
M+1∑
m=1

(1 ± εcm)‖wm‖M

= ‖w̄‖M +

M+1∑
m=1

‖wm‖M ± ε

M+1∑
m=1

cm‖wm‖M

= ‖w‖M ± ε

M+1∑
m=1

cm‖wm‖M

= β ± ε

M+1∑
m=1

cm‖wm‖M.(33)

If
∑M+1

m=1 cm‖wm‖M �= 0, then we either have ‖w + εμ‖M < β or ‖w − εμ‖M < β,
which is impossible since the minimum over U is β. Hence,

M+1∑
m=1

cm‖wm‖M = 0

and ‖w + εμ‖M = ‖w − εμ‖M = β, which translates into (w + εμ, p) and (w − εμ, p)
being included in V . This, in turn, implies that (w, p) = 1

2 (w + εμ, p) + 1
2 (w − εμ, p)

is not an extreme point of V . .
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[33] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory
and Fourier Analysis, 2nd ed., Grundlehren Math. Wiss. 256, Springer-Verlag, Berlin,
1990. (Cited on p. 774)

[34] T. Kurokawa, Riesz potentials, higher Riesz transforms and Beppo Levi spaces, Hiroshima
Math. J, 18 (1988), pp. 541–597. (Cited on p. 781)

[35] J. E. Lavery, Shape-preserving, multiscale fitting of univariate data by cubic L1 smoothing
splines, Comput. Aided Geom. Design, 17 (2000), pp. 715–727. (Cited on p. 778)

[36] M. Lustig, D. L. Donoho, and J. M. Pauly, Sparse MRI: The application of compressed
sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), pp. 1182–
1195. (Cited on pp. 769, 770)

[37] W. R. Madych and S. A. Nelson, Polyharmonic cardinal splines, J. Approx. Theory, 60
(1990), pp. 141–156. (Cited on pp. 776, 779)

[38] E. Mammen and S. van de Geer, Locally adaptive regression splines, Ann. Statist., 25 (1997),
pp. 387–413. (Cited on pp. 770, 778, 786)

[39] S. Ramani and J. Fessler, Parallel MR image reconstruction using augmented Lagrangian
methods, IEEE Trans. Medical Imaging, 30 (2011), pp. 694 –706. (Cited on p. 770)

[40] H. Rauhut, K. Schnass, and P. Vandergheynst, Compressed sensing and redundant dictio-
naries, IEEE Trans. Inform. Theory, 54 (2008), pp. 2210–2219. (Cited on p. 771)

[41] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algo-
rithms, Phys. D, 60 (1992), pp. 259–268. (Cited on pp. 770, 771, 776)

[42] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. (Cited on
p. 774)

[43] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991. (Cited on pp. 789, 790)
[44] O. Scherzer, Taut-string algorithm and regularization programs with G-norm data fit, J.

Math. Imaging Vision, 23 (2005), pp. 135–143. (Cited on p. 786)
[45] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by ana-

lytic functions, Quart. Appl. Math., 4 (1946), pp. 45–99, 112–141. (Cited on p. 779)
[46] M. H. Schultz and R. S. Varga, L-splines, Numer. Math., 10 (1967), pp. 345–369. (Cited on

pp. 778, 779)
[47] L. L. Schumaker, Spline Functions: Basic Theory, 3rd ed., Cambridge University Press,

Cambridge, UK, 2007. (Cited on p. 778)
[48] G. Steidl, S. Didas, and J. Neumann, Splines in higher order TV regularization, Internat.

J. Comput. Vision, 70 (2006), pp. 241–255. (Cited on p. 770)
[49] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. Ser. B,

58 (1996), pp. 265–288. (Cited on pp. 769, 771)
[50] M. Unser, Sampling—50 years after Shannon, Proc. IEEE, 88 (2000), pp. 569–587. (Cited on

p. 778)
[51] M. Unser and T. Blu, Fractional splines and wavelets, SIAM Rev., 42 (2000), pp. 43–67,

https://doi.org/10.1137/S0036144598349435. (Cited on pp. 778, 779)
[52] M. Unser and T. Blu, Cardinal exponential splines: Part I—Theory and filtering algorithms,

IEEE Trans. Signal Process., 53 (2005), pp. 1425–1449. (Cited on pp. 778, 779, 786)
[53] M. Unser and T. Blu, Self-similarity: Part I—Splines and operators, IEEE Trans. Signal

Process., 55 (2007), pp. 1352–1363. (Cited on p. 778)
[54] M. Unser, J. Fageot, and H. Gupta, Representer theorems for sparsity-promoting �1 regu-

larization, IEEE Trans. Inform. Theory, 62 (2016), pp. 5167–5180. (Cited on p. 771)
[55] M. Unser and P. D. Tafti, An Introduction to Sparse Stochastic Processes, Cambridge Uni-

versity Press, Cambridge, UK, 2014. (Cited on pp. 778, 779)
[56] M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation,

IEEE Trans. Signal Process., 50 (2002), pp. 1417–1428. (Cited on p. 778)
[57] J. P. Ward and M. Unser, Approximation properties of Sobolev splines and the construction of

compactly supported equivalents, SIAM J. Math. Anal., 46 (2014), pp. 1843–1858, https://
doi.org/10.1137/130924615. (Cited on p. 779)

[58] H. Wendland, Scattered Data Approximations, Cambridge University Press, Cambridge, UK,
2005. (Cited on p. 779)

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

2/
17

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

https://doi.org/10.1137/S0036144598349435
https://doi.org/10.1137/130924615
https://doi.org/10.1137/130924615

	Introduction
	Linear Inverse Problems: Current Status and Motivation
	Finite-Dimensional Formulation
	Infinite-Dimensional Formulation
	Road Map of the Paper

	Representer Theorems for Generalized Total Variation
	Notation
	Main Result on the Optimality of Splines
	Connection with Unconstrained Problem
	Generalized Interpolation

	Application Areas
	Interpolation
	Generalized Sampling
	Compressed Sensing
	Inverse Problems in the Space of Measures

	Splines and Operators
	Native or Generalized Beppo-Levi Spaces
	Proof of Theorems 1 and 2
	Further Theoretical and Computational Issues
	Appendix A. Proof of Theorem 3
	Appendix B. Proof of Theorem 4
	Appendix C. Proof of Theorem 6
	Appendix D. Proof of Theorem 7
	Part I: V Is Nonempty, Convex, and Weak*-Compact
	Part II: The Extreme Points of  V Are of the Form (27)
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




