Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Deep Splines
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Deep Splines

M. Unser

Plenary talk, Twenty-Eighth European Signal Processing Conference (EUSIPCO'20), Amsterdam, Kingdom of the Netherlands, Virtual, January 18-22, 2021.


We present a unifying functional framework for the implementation and training of deep neural networks (DNN) with free-form activation functions. To make the problem well posed, we constrain the shape of the trainable activations (neurons) by penalizing their second-order total-variations. We prove that the optimal activations are adaptive piecewise-linear splines, which allows us to recast the problem as a parametric optimization.

We then specify some corresponding trainable B-spline-based activation units. These modules can be inserted in deep neural architectures and optimized efficiently using standard tools. We provide experimental results that demonstrate the benefit of our approach.

This is joint work with Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser2101.html,
AUTHOR="Unser, M.",
TITLE="Deep Splines",
BOOKTITLE="Twenty-Eighth European Signal Processing Conference
	({EUSIPCO'20})",
YEAR="2021",
editor="",
volume="",
series="",
pages="",
address="Amsterdam, Kingdom of the Netherlands",
month="January 18-22,",
organization="",
publisher="",
note="Plenary talk")
© 2021 EUSIPCO. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from EUSIPCO. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved