Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Radon Transform
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Ridges, Neural Networks, and the Radon Transform

M. Unser

Journal of Machine Learning Research, vol. 24, no. 37, pp. 1-33, 2023.


A ridge is a function that is characterized by a one-dimensional profile (activation) and a multidimensional direction vector. Ridges appear in the theory of neural networks as functional descriptors of the effect of a neuron, with the direction vector being encoded in the linear weights. In this paper, we investigate properties of the Radon transform in relation to ridges and to the characterization of neural networks. We introduce a broad category of hyper-spherical Banach subspaces (including the relevant subspace of measures) over which the back-projection operator is invertible. We also give conditions under which the back-projection operator is extendable to the full parent space with its null space being identifiable as a Banach complement. Starting from first principles, we then characterize the sampling functionals that are in the range of the filtered Radon transform. Next, we extend the definition of ridges for any distributional profile and determine their (filtered) Radon transform in full generality. Finally, we apply our formalism to clarify and simplify some of the results and proofs on the optimality of ReLU networks that have appeared in the literature.

@ARTICLE(http://bigwww.epfl.ch/publications/unser2301.html,
AUTHOR="Unser, M.",
TITLE="Ridges, Neural Networks, and the Radon Transform",
JOURNAL="Journal of Machine Learning Research",
YEAR="2023",
volume="24",
number="37",
pages="1--33",
month="",
note="")
© 2023 The Authors. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from The Authors. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved