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Let L be a linear shift-invariant and isotropic operator that is characterized by its
radial Fourier profile L̂rad : R → R. We further assume that L̂rad is non-vanishing,
except for a zero of order (n0 − 1) at the origin. This operator is in one-to-one
correspondence with the activation function σL = F−1{1/L̂rad} : R→ R where F−1
denotes the inverse Fourier transform. We define the corresponding Radon domain
regularization operator LR = KradRL :MLR

(Rd)→Meven(R×Sd−1) where R is the
Radon transform, Krad is the filtering operator of computed tomography (such that
R∗KradR = Id), and Meven is the space of even hyper-spherical bounded measures
(see [1] for the precise definition of these elements).

Given the data points (xm, ym) ∈ Rd × R with m = 1, . . . ,M , we then consider
the functional optimization problem

arg min
f∈MLR

(Rd)

M∑
m=1

∣∣ym − f(xm)
∣∣2 + λ‖LRf‖M(R×Sd−1)(1)

whereMLR
(Rd) is a suitable function space such that ‖LRf‖M < +∞. The purpose

of this presentation is to specify the native space MLR
(Rd) such that the global

optimum of (1) is achieved by a “shallow” neural network of the form

f(x) =

K0∑
k=1

akσL(ξ
T
kx− tk) +

∑
|n|≤n0

bnx
n(2)

for some K0 ≤ M − dim(Pn0), and an appropriate set of weights (ξk, tk, ak) ∈
Sd−1×R×R, k ∈ {1, . . . , K0}, and bn ∈ R, |n| ≤ n0. Specifically, by identifying the
underlying native spaceMLR

(Rd) as a Banach space that is isometrically isomorphic
to Meven(R × Sd−1) × Pn0 where Pn0 is the space of polynomials of degree n0, we
shall prove that the claimed optimality result holds under very mild conditions on
L̂rad or, equivalently, on σL (for the variational interpretation of given class of neural
networks). In addition, we shall demonstrate that the expansion (2) is universal in
the sense that any continuous function can be represented to an arbitrary degree of
precision by a superposition of neurons (ridges) plus a polynomial term.
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