Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Least-Squares Post-Filtering
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Improved Restoration of Noisy Images by Adaptive Least-Squares Post-Filtering

M. Unser

Signal Processing, vol. 20, no. 1, pp. 3-14, May 1990.


The author describes a class of post-filtering algorithms that adaptively compute a linear combination between a noisy image and a restored version of it obtained by linear filtering. A set of optimal weighting coefficients is derived by minimizing the quadratic error between the output of this system and a noise-free signal. The only a priori information that is required is the noise variance. The local application of this optimization principle leads to the definition of the constrained and nonconstrained adaptive least-squares filters (ACLSF and ALSF, respectively). These algorithms, and particularly the ACLSF, can be implemented in an extremely efficient way by using a fast recursive updating strategy. The author then considers the particular case of a moving average as the initial filter and compare this application of the ALSF and ACLSF with Lee's (1980) adaptive noise filtering algorithm. He also presents some simulations and experimental examples illustrating the capability of these algorithms to reduce noise efficiently while preserving image details.

@ARTICLE(http://bigwww.epfl.ch/publications/unser9003.html,
AUTHOR="Unser, M.",
TITLE="Improved Restoration of Noisy Images by Adaptive
	Least-Squares Post-Filtering",
JOURNAL="Signal Processing",
YEAR="1990",
volume="20",
number="1",
pages="3--14",
month="May",
note="")

© 1990 Elsevier. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Elsevier. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved