Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Regularization Filters
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Recursive Regularization Filters: Design, Properties, and Applications

M. Unser, A. Aldroubi, M. Eden

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp. 272-277, March 1991.


Least squares approximation problems that are regularized with specified highpass stabilizing kernels are discussed. For each problem, there is a family of discrete regularization filters (R-filters) which allow an efficient determination of the solutions. These operators are stable symmetric lowpass filters with an adjustable scale factor. Two decomposition theorems for the z-transform of such systems are presented. One facilitates the determination of their impulse response, while the other allows an efficient implementation through successive causal and anticausal recursive filtering. A case of special interest is the design of R-filters for the first- and second-order difference operators. These results are extended for two-dimensional signals and, for illustration purposes, are applied to the problem of edge detection. This leads to a very efficient implementation (8 multiplies + 10 adds per pixel) of the optimal Canny edge detector based on the use of a separable second-order R-filter.

@ARTICLE(http://bigwww.epfl.ch/publications/unser9103.html,
AUTHOR="Unser, M. and Aldroubi, A. and Eden, M.",
TITLE="Recursive Regularization Filters: {D}esign, Properties, and
	Applications",
JOURNAL="{IEEE} Transactions on Pattern Analysis and Machine
	Intelligence",
YEAR="1991",
volume="13",
number="3",
pages="272--277",
month="March",
note="")

© 1991 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved