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Abstract—The least-squares polynomial spline approximation
of a signal g(7) € L,(R) is obtained by projecting g(¢) on $"(R)
(the space of polynomial splines of order n). We show that this
process can be linked to the classical problem of cardinal spline
interpolation [1] by first convolving g(7) with a B-spline of
order n. More specifically, the coefficients of the B-spline inter-
polation of order 21 + 1 of the sampled filtered sequence are
identical to the coefficients of the least-squares approximation of
g(t) of order n. We then show that this approximation can be
obtained from a succession of three basic operations: prefilter-
ing, sampling, and postfiltering, which confirms the parallel with
the classical sampling /reconstruction procedure for bandlimited
signals., We determine the frequency responses of these filters
for three equivalent spline representations using alternative sets
of shift-invariant basis functions of $"(R): the standard expan-
sion in terms of B-spline coefficients, a representation in terms
of sampled signal values, and a representation using orthogonal
basis functions. For the two latter cases, we prove that the
frequency response of these filters converge to the ideal lowpass
filter pointwise and in all L -norms with 1 < p < o as the
order of the spline tends to infinity, which establishes the asymp-
totic equivalence with Shannon’s sampling theorem.

Index Terms—Interpolation, B-splines, polynomial splines,
spline filters, sampling theorem, least-squares approximation,
asymptotic convergence.

I. INTRODUCTION

HE Whittaker-Shannon sampling theorem states that

every signal function g(¢) (¢ €R) that is bandlimited to
fel— 2T, 1T], can be completely reconstructed from its
samples A(kT) where (k € Z) [2]. An important implication
of this result is the standard sampling/reconstruction
paradigm for the sampled representation of a signal g(¢)e
L,(R) that involves three distinct processing steps. Without
loss of generality, we assume that T = 1 to simplify the
notation. First, the function needs to be bandlimited through
the use of a so-called anti-aliasing filter (ideal lowpass filter):

+ oo
/ sinc (7)g(t — 7) dr = sinc*g(¢), teR,
(1)

g(1) =
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where sinc () := sin (w¢)/x¢ and the asterisk denotes the
convolution operator. Second, £(¢) is sampled by multiplica-
tion with a delta sampling function (denoted by i,(¢)):

B0 = £ i) = £ #Ra(-K).  ren
(12)

Finally, the bandlimited approximation is reconstructed with-
out any loss using an ideal interpolation filter:

teR. (1.3)

The whole process (as well as (1.1) taken on its own) can be
interpreted as a projection of g(f) onto the subspace of
functions that are bandlimited to fe[— 1, 3]. As a conse-
quence, the quadratic error between g(¢) and its approxima-
tion g(¢) is minimized given the reconstruction algorithm
described by (1.3).

For numerical computations, the ideal interpolation formu-
lae (1.3) is not practical due to the slow rate of decay of the
interpolation kernel. An attractive alternative is a reconstruc-
tion by polynomial spline interpolation, which is conven-
iently described as [3]

&(t) = sinc* g,(1),

+ o

g"(t) = 2 c(k)B"(t = k) = B™cs(1),

k=00

teR,

(1.4)

where c(k) are the B-spline coefficients and where 37(¢) is
the central B-spline of order n defined as

B (1):= jzl (_1)j(nfl)(t+

i=o n! J

n+1 )
2 ),

teR,

(1.5)

where (x), = max {0, x}. The B-spline function 8"(¢) can
also be constructed by repeated convolution of a B-spline of
order 0:

B"(’) - 50*60*"'*30(t)’
(n + 1) times

(1.6)

where 3°(x) is the indicator function in the interval [— &,
3). The main difficulty in this interpolation procedure is to
determine the B-spline coefficients c(k) that interpolate a
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given sequence of discrete values g(k)e/,(Z) (except for
the trivial cases of zero- and first-order interpolation). This
problem is commonly referred to as the cardinal spline
interpolation problem and has been extensively studied by
Schoenberg [1], [3]. More recently, we have established the
link between this process and conventional digital filtering
theory and described fast inversion and reconstruction algo-
rithms using recursive filters [4]. We have also shown that
the spline interpolator of order n approaches an ideal sinc
interpolator as n goes to infinity [5].

In the case of B-spline interpolation, Hummel has shown
that the use of an appropriate prefilter different from the one
used in (1.1) prior to sampling can lead to a reduced mean
square error after reconstruction [6]; this author derived
weighting functions for zero-order, linear and cubic spline
interpolation. The purpose of this paper is to extend those
results by providing explicit filter formulas for splines of any
order and to stress the parallel between this process and
classical sampling theory (1.1)~(1.3). More important, we
will show in Section IV that the optimal prefilters converge
(pointwise and in all L p-norms) to an ideal lowpass filter as
n tends to infinity, thus establishing the asymptotic equiva-
lence with Shannon’s sampling theorem.

Least-squares spline approximation is also closely related
to the wavelet representation which is an orthogonal multires-
olution decomposition of a signal [7]-[9]. This formulation
suggests the use of an alternative representation using orthog-
onal basis functions that is also considered in this paper.
Interesting enough, we will show that the asymptotic conver-
gence to an ideal lowpass filter also holds for the correspond-
ing convolution operators.

A. Notations and Definitions

L,(R) denotes the space of measurable, square-integrable,
functions g(#), t€R. The inner product of two functions
g(1) elL,(R) and A(r) €L,(R) is

(g(1), n(1)) = /wg(t)h(t) dt.

-

The Fourier transform of any function g(¢) € L,(R) is repre-
sented by a roman capital letter:

(1) = [ slner

— oo

1,(2) is the vector space of square-summable sequences:

+ oo

> Ju(k)[ < 4ol

1(2) {u(k), (ke):
k= —o

$"(R) is the subset of functions of L,(R) that are of class
®"~! (i.e., continuous functions with continuous derivatives
up to order n — 1) and are equal to a polynomial of degree n
on each interval [k, k + 1], ke€Z, when n is odd, and
[k—1/2, k+1/2], keZ when n is even. $"(R) is a
closed vector space and is defined by (1.4) where c(k) € [,(2)
[1, Theorem 12, p. 199].

II. LEAST-SQUARES B-SPLINE APPROXIMATION

In this section, we provide a short derivation that estab-
lishes a formal link between the least-squares B-spline ap-
proximation of a function g(¢) €L,(R) and the classical
problem of cardinal B-spline interpolation of a discrete se-
quence a(k) €l,(Z). This result suggests a simple computa-
tional procedure for the determination of the B-spline coef-
ficients.

Since $"(R) is a closed subspace of L,(R), we know that
the minimum L,-norm approximation of g(#) can be found
by projecting this function into $”(R). Consequently, the
residual error [g(¢) — g"(#)] is orthogonal to $"(R), which
implies that

(g(r) —g"(1).B"(t—k)) =0, VvkeZ. (2.1)
Using (1.4), this expression is rewritten as
(6(0).87(1 = #))
= 15» c()B™(t=1),8"(t — k)|, VkeZ,
and is also equivalent to
(8. 8°(= ) = 5 e(E(~ 1,87~ k),
- vkeZ. (2.2)

We now use the well-known property that B"*37(¢) =
B2"*+(¢) (which follows directly from (1.6)) and define the
discrete sequences

a(k) = (B"*g)(k) = (g(2), 8"(t — k)), vkeZ,
(2.3)

b2"+l(k)2= 62"+l(k)=(5"(1),B"(l—k)), vkeZ.
(2.4)

Since g(#) € L,(R), it is not difficult to show that a(k) € /,(Z)
by using the fact that the support of B3”(#) is compact.
Substituting these quantities in (2.2), we find that the se-
quence of least squares B-spline coeflicients c(k) must sat-
isfy

+ oo

Y (B (k- 1) = b *e(k) = a(k),

/= —~o
vkeZ. (2.5)

Interestingly enough, the inversion of this difference equation
is equivalent to the problem of finding the B-spline coeffi-
cients of order 2n + 1 that provide an exact interpolation of
a(k). From the existence theorems of Schoenberg [1], we
know that the solution of (2.5) exists and is unique. Specifi-
cally, we can write

c(k) = (b*"+1) ' *a(k), (2.6)

where (b?"*!)~! denotes the convolution inverse of the
sampled B-spline kernel #2"*!. This solution can be com-
puted efficiently using the recursive algorithm described in

[4].

vkeZ,
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In summary, the least-squares B-spline approximation of a
signal g(7) can be carried out in three simple steps: 1) a
convolution of the signal with a continuous B-spline kernel
B"(¢), 2) a sampling to provide the discrete sequence a(k) €
1,(Z), and 3) a digital filtering using a so-called direct
B-spline filter of order 2n + 1 (cf. (2.6)).

From (1.6), we obtain the Fourier transform of a B-spline
of order n:

B"(f) = [sinc.(f)]"H. (2.7)

The Fourier transform of (b*"*!)~! is the inverse of the
Fourier transform of 5%"*! and is given by (cf. [4])

1
S2n+l(f) —

n+1

B> *10) +2 Y b2 (k) cos (2mkf)
k=1

1
- (2.8)

k:Z:o [sinc (f- k)]zn+2 -

The representation of the denominator of (2.8) in terms of
sampled B-spline coefficients or an infinite sum of shifted
sinc functions (Poisson’s summation formula) are equivalent.
In the reminder of the paper, we will use the latter which is
slightly more compact, although it is clear that the former is
better suited for making graphs or performing numerical
computations. We note that the filter coefficients in the
central equality of (2.8) can either be determined directly
from (1.5), or computed recursively as described in [5].

III. EQUIVALENT B-SPLINE REPRESENTATIONS

In order to emphasize the similarity between B-spline
approximation and the conventional sampling/reconstruction
procedure described by (1.1)-(1.3), we have chosen to refor-
mulate the former algorithm as a succession of three basic
operations: 1) prefiltering, 2) sampling, and 3) postfiltering
for interpolation (cf. Fig. 1). In particular, we discuss three
equivalent approaches using different sets of shift-invariant
basis functions of $"(R).

A. B-Spline Coefficients

The standard B-spline representation of a signal uses
shifted B-spline basis functions (cf. (1.4) and (1.5)). It is not
difficult to show that the algorithm described previously is
equivalent to the following procedure

es(1) = (B7*g(0)).i,(1), ter. (3.1
in which convolutions (2.3) and (2.6) have been combined in
a single prefilter:

+ o

3 (62T (k)B (1 - k).

k= —

B(t) = (3.2)

97

We refer to this latter function as the dual spline of order n;
in fact, it can be verified that (3(¢) satisfies the biorthogonal-
ity condition

vk, lez, (B"(x—k),B(x-1)

-l 63

Frogn (3.2), it follows immediately that the Fourier transform
of B(1) is

7(7)

if k=1
otherwise.

Il

Bn(f)52n+l(f)
[sinc (_}‘)]"Jrl
k;@ [sinc (f- /{)]ZH2

., feR. (34)

The corresponding reconstruction algorithm is (1.4) and is in
all points similar to (1.3). The frequency responses of these
operators for n = 1 and 3 are shown in Fig. 1(a).

B. Sampled Signal Representation

Another useful representation of the function g”(f)e
$"(R) that approximates g(¢) is an expansion in which the
coefficients are the sampled values of the interpolating func-
tion. This representation is given by .

S g (K)n(e— k) = e gd (o),

k= —o

g"(t) = teR,

(3.5)

where 7"(¢) is the so-called cardinal (or fundamental) spline
of order n [5]. An explicit formula for »"(¢) is

+o

()= >

(b") (k)87 (1~ k). (3.6)
where (5”)~' is the impulse response of the direct B-spline
filter of order n [4]. The cardinal splines together with sinc
(7) share the fundamental interpolation property

n _J1, if k=0,
vkez, (k)= {07 M SR X
which can be directly linked to (3.6) (i.e., 75(k) =

(b™)"'*b (k) = 8,(k), where 8o(k) is the unit impulse at
the origin). Hence, the Fourier transform of #"(¢) is given
by
[sinc (f)] nl

Foo :

> [sinc (f - k)]"+1
k= —o0

(3.8)

H"(f) = B"(f)S"(f) =

The corresponding prefiltering algorithm is obtained by sub-
stituting the B-spline coefficients given by (3.1) in (1.4) and
resampling the reconstructed signal. An equivalent represen-
tation is

g;(1) = (1"*g(1)).i(1),

teR.  (3.9)
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Fig. 1. Three equivalent procedures for the least-squares B-spline approximation of a signal with the frequency responses of the
corresponding filters for n = 1, 3 and 4o. n = 1: — (piecewise linear), n = 3: --- (cubic spline), and n — tooi ------
(bandlimited approximation). (a) B-spline coefficients. (b) Sampled signal values. (c) Orthogonal basis functions.
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where %"(¢) is the convolution of Bo”(t) with a sampled
B-spline kernel. Thus, the frequency response of this opera-
tor is

B(f)
5"(f)

[sinc (f)]"H k:iom [sinc (f — k)]"“

k:Z:D [sinc (f — k)]ZM2

A"(f) =

(3.10)

This process is illustrated in Fig. 1(b) for splines of order 1
and 3. The dotted lines correspond to the limit of these
transfer functions as n goes to infinity. The issue of the
convergence of both 4"() and 7"(¢) to an ideal lowpass filter
is treated in Section IV,

C. Orthogonal Expansion

Alternatively, g”(f) € $"(R) may be represented in terms
of basis functions that are orthogonal in addition to being
shifted replicates of one another. These functions have been
described by Mallat within the more general framework of
the wavelet decomposition [8] and can be linked to the
wavelet functions for polynomial splines derived by Lemarié
[9]. The corresponding orthogonal representation of g”"(¢) is

()= 3 d(k)e"(t - k) = o"rdy(r). (3.11)

k= —o0

where the basis functions of order n are symmetrical and
satisfy the orthogonality condition:

vkeZ, (¢"(¢).0"(t~k)) = {(1) ii::g
(3.12)

Due to this property, the expansion coefficients are obtained
by simple inner product. An equivalent formulation is

dy(1) = (6™ 2(1)).i,(1). (3.13)

It can be shown that the Fourier transform of ¢"(¢) is given
by

B"(/)B"(f)
[sinc (£)]""'
Y [sinc (f - k)]Z"Jr2

k= —o0

F(f)

, (3.14)

which is an alternative but equivalent form of (56) and (57) in
[8]. The corresponding procedure is illustrated in Fig. 1(c).
As in the previous case, F"(f) converges to the ideal
lowpass filter as n goes to infinity (cf. Theorem 3).

We note that (3.14) can be obtained in a straightforward
manner by recognizing the fact that alternative sets of shift
invariant basis functions can be generated by convolution of a
basic B-spline kernel:

¢"(1) = u;*6"(1), (3.15)

99

where u(¢) is the sampled representation of an invertible
shift invariant operator u(k)e 4,(Z). The corresponding
inner product can be expressed as a discrete convolution:

(¢7(2), ¢"(¢ — k)) = w*u*b*"*'(k), (3.16)

where u'(k) = u(—k), and is equivalent to (3.12), if and
only if w*u = (b>"*")~! which implies that the Fourier
transform of the discrete sequence (u'*u)(k) must be equal
to (2.8).

D. Comments

Fig. 1 illustrates the similarity between polynomial spline
approximation and the conventional sampling /reconstruction
procedure for bandlimited signals. Not too surprisingly, all
prefilters attenuate frequencies above 1/(27), which is con-
sistent with the requirement for an antialiasing filter in con-
ventional sampling theory. We note, however, that in the first
case the prefilter tends to emphasize high frequencies in the
bandpass region to compensate for the smoothing effect of the
B-spline postfiltering. The same effect, but to a lesser extent,
is also observed in the second case, although it tends to
vanish for higher order splines. The response is the closest to
an ideal bandpass filter in the third case. If one looks at the
reconstruction part of the algorithm only, the parallel with
the conventional approach holds only for the second scheme,
which is the only one that precisely uses a polynomial spline
interpolator as postfilter.

The important point that we want to emphasize here is that
the choice of a given interpolation algorithm should predeter-
mine the selection of the prefilter. In fact, both prefiltering
and interpolation algorithms are specified by the underlying
signal space. The main advantage of a consistent design that
takes into account these considerations is to minimize the loss
of information occurring during discretization. For instance,
it turns out that the use of an ideal anti-aliasing filter is not
necessarily optimal, unless it is used in conjunction with a
sinc interpolator, as specified by the sampling theorem.

The equivalent of Shannon’s sampling theorem for polyno-
mial splines is that a function g”"(¢) e $"(R) can be recov-
ered without any loss from its samples. This result simply
follows from the properties of projection operators. How-
ever, there are two important distinctions to be made. First,
unlike in the case of bandlimited functions, there is no shift
invariance since g”(¢ — 7), with 0 < 7 < 1, is in general
not an element of $”(R). Second, the output of the prefilter
described by (3.5) and (3.6) will in general not be a function
of 8"(R), although its samples will coincide with those of
g"(1). In other words, the prefilter alone is not a projection
operator, in contrast with the ideal lowpass filter in (1.1) that
computes a bandlimited approximation of g(¢). In Section
1V, we will show that these differences vanish as the order of
the splines tends to infinity.

Despite the use of different filters, the three approaches
that have been considered are globally equivalent. The prod-
ucts of the pre- and postfilter frequency responses are identi-
cal in all cases. These various schemes are associated with
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different product decompositions of S§2"*'(f) =
X (NY,(f), where X,(f) and Y,(f) are periodic func-
tions of f. The factors X ,(f) and Y,(f) can be interpreted
as the frequency responses of sampled (or discrete) filtering
modules that can be applied before or after sampling without
any modification of the global system response.

The process by which a signal is represented in terms of
the coefficients of either one of the spline expansions previ-
ously described is a particular form of discretization. Each
representation has some specific advantages and the selection
of the most appropriate one depends on the kind of signal
processing to be performed. For instance, the representation
in term of B-spline basis functions (Section III-A) is compu-
tationally the most attractive if one uses the procedure de-
scribed in Section II. It is also well suited for signal analyses
involving operations such as differentiation, integration,
searching for extrema, etc. .., which are best expressed in
terms of B-spline coefficients [10], [11]. The representation
in term of sampled signal values (section III-B) is the most
appropriate for conventional digital signal processing. It is
very similar to the classical sampling/reconstruction ap-
proach in the sense that the reconstruction is obtained by
interpolation. We also note that this representation can be
obtained from the previous one by simple convolution with a
sampled B-spline kernel, which is a finite impulse response
(FIR) filter of length | n /2| + 1. Finally, the representation
in term of orthogonal basis functions (Section III-C) has the
advantage of using identical pre- and postfilters. It is particu-
larly well suited for multiresolution analysis due to the
orthogonality of the basis functions, and has specifically been
designed for that purpose [7]. However, in contrast with
approaches A and B, the corresponding IIR filters cannot be
implemented recursively because of the square root in the
denominator of their transfer function. In practice, this means
that these filters must be approximated by FIR operators,
which may result in some approximation error or in an
increase in computation.

IV. CONVERGENCE TC AN IDEAL Lowpass FILTER

By using the fact that sinc (f — k) = (—1* sin
(wf)/w(f — k), the transfer functions of the filters dis-
cussed in the preceding section are rewritten as

1
H'(f) = T 0h U7’ (4.1)
H'(f) = 1%}22% (4.2)
F(f) = : (4.3

where the function U”(f) is defined as

It will be shown here that these operators approach an ideal
lowpass filter as n goes to infinity. This results establishes
the asymptotic correspondence between polynomial spline
interpolation and the well-known sampling theorem. For this
purpose, we start with the following Lemmas.

Lemma 1: The function | U”(f)| is bounded from above:

vfe(0,1), (4.5)

4
!U(f)l<W’

and

|U”(f>|<6;) C ve(l+e), (46)

with0 <=y =min {f—|f|].1 - (S -|f]D} = 1/2, where
| f] denotes the ““floor”” function that performs the integer
truncation of f.

Lemma 2: The function U2"*!(f) is bounded from be-
low:

f 2n+2
(——) < U f), vie(1/2, +o), (4.7)
Y
where 0 < vy < 1/2 is defined as in Lemma 1. These inequal-

ities are then used to prove the following theorems.

Theorem I: The Fourier transforms of the optimal pre-
filter H"(f) for polynomial spline interpolation converge
pointwise to an ideal lowpass filter as n tends to infinity:

1 | fl<1/2,

lim H7(f) = Rect (f) = {1/2,  |fl=1/2,

e 0, | f]>1/2.
(4.8)

Moreover, ﬁ”(f) converge to Rect (f) in L,(—o0, +)
as n goes to infinity Vp €[1, ).

To prove this theorem, we also use the following result
that was established by us previously [5].

Theorem 2: The Fourier transforms of the polynomial
spline interpolators H"(f) converge pointwise to an ideal
lowpass filter as n tends to infinity:

lim H"(f) = Rect (f).

n—oo

(4.9)

Moreover, H"(f) converge to Rect (f) in L (—o0, +)
as n goes to infinity Vp e[1, o).

1

un(s) = .

+oo 1
kgl ( (k/f+1)"! * (k/f-1)"

), n odd,

1

f(-l)k(
k=1

(k/f+ 1)n+l -

) 5 neven.

(k/f- 1)
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Not too surprisingly, we get an equivalent result for a
representation of splines in term of orthogonal basis functions
as follows.

Theorem 3: The Fourier transforms of the orthogonal
spline basis functions F"( f) converge pointwise to an ideal
lowpass filter as n tends to infinity:

lim F"(f) = y/Rect(f).

n—oo

(4.10)

Moreover, F"(f) converge to Rect (f) in L (- o, + ) as
n goes to infinity Vp €[1, o).
Using a well-known theorem in transform theory [12] that
1

1
states that for 1 = p =<2 and — + —= 1, the Fourier

p
transform is a bounded linear operator from L ,(— 0, + oo)
into L (— o0, + o), we derive the following theorem.

Theorem 4. The spline filter functions %"(¢), °(¢), and
¢"(¢) converge in L, (— o, +o0) to sinc (¢) (the impulse
response of the ideal lowpass filter) as n goes to infinity,
vge(2, o].

Proof of Lemma 1: Let us define the functions of the
continuous variables x and f,

1

x, f) = ——— 4.11
ui(x, f) ) (4.11)
and
5 = ! 4.12
uz(x,f)—w- (4.12)
Clearly, we have that
[U"(N)] = Ur(f) + U (f). (4.13)
where
ur(sf) = fu;?(k,f), i=1,2. (4.14)
k=1

For any given f, the function u7(x, f) is strictly decreasing
for xe (0, + o) and so is u5(x, f) for xe(f, + ). This
implies that, for any k within those intervals,

ui(k.f) < [

k—1

k
ul(x, f) dx.

It follows that

+ o
UMS) <uf(1,f) + / up(x, f) dx
1

= ! — + S = (4.15)
(1/f+1) n(l/f+ 1)
and
+ +
S k. s) <ullko+ 1)+ [ ui(x o) ax
k=ko+1 ko+1
1
! (4.16)

ST T ke )=

101

where k, = | f]. For fe(0, 1), k is zero and the left term
of this latter expression is U,’(f). By combining (4.15) and
(4.16), we get the inequality

1
[un(f)] < Wre
f 1
n _— .
n(l/f+1)" (1 f-1)""
+m, VfE(O,l), (417)

which immediately leads to the first part of Lemma 1.
Similarly, uj(x, f) is strictly increasing for xe (0, f),
which implies that

+1

k
uy(k, f) < / ui(x, f) dx,

k
fork =0,---,ky— 1,
where k, = | f|. It then follows that

ko

ko
3 ug’(k,f)</ ui(x, f)dx + uj(ky, f)
k=1 1
_ f _ f
nlko/f— 1" n|l/f-1|"
! (4 18)
VNN '

By defining the quantity 0 < ¢ = f — k, < 1 and combining
(4.15), (4.16), and (4.18), we get the inequality

1
Uﬂ
‘ (f)\<(1/f+1)n+l
+ / !
n(1/f+1)" * |1/ f— 1]+
— /
n(e/f)" n((1 - e)/f)"
1
+———,  vfe(l, +). (4.19
/1) &( ). (4.19)

The second part of Lemma 1 simply follows from the fact
that the largest term of the right-hand side is (f/v)"*',
where v = min (e, 1 — ). ]

The proof of Lemma 2 is trivial and follows from the fact
that the individual terms in U2"*!(f) are all positive and
that the largest one is precisely (f/v)?"*2.



102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 1, JANUARY 1992

Proof of Theorem 1: The transfer function H "(f) can
be decomposed as

N U (f)
H (f)* 1+U2n+l(f) + 1+U2n+l(f)
= H*™ ' (f)+ R"(f). (4.20)

The essential part of the proof will be to show that the second
term of this decomposition converges to zero since we al-
ready know from Theorem 2 [5] that H?"*'(f) converges
pointwise as well as in all L, -norms to Rect( f). Three
distinct cases have to be considered.

a) fe(0, 1/2).
From Lemma 1 and 2, we have that
U"(f)

1 + U2n+l(f)

4
(4.21)

For fe (0, 1/2), this expression converges to zero as n
goes to infinity, which proves the pointwise conver-
gence. To get an estimate for the L ,-norm, we raise
the right term to the power p and integrate to get

. » 1/2 4
”R (f)HL,,(O,l/Z) < A (l/f— l)p("+1) df
2
< —) (4.22)
np+p+1

which also tends to zero as n goes to infinity.
b) fe(l/2, 1).

From Lemma 1 and 2, R"(f) is bounded from above

as
u(f) Uu(f) ne
‘ 1+ U2n+1(f) ‘ <‘ U2n+1(f) <4('Y/f) ],
where 0 <y = (1 - f)<1/2. Since f>1/2, we
also have
R"(f) < 4(2y)""", (4.23)

which convergences to zero for v < 1/2. An estimate
of the L -norm is provided by

1/2
IR (N o< [ 4" ay
0

2
= — (4.24)
np+p+1

which tends to zero as n goes to infinity.
¢) fe(l, +x).
From Lemma 1 and 2, it follows that
ur(s) < [U"(f)|
1+ U2n+l(f) U2n+](f)

<6(y/f)"T < 6/fmF (4.25)

since 0 < y < 1. For f > 1, the right-most term con-
verge to zero, which proves the pointwise conver-
gence. An estimate of the L -norm is provided by

+o 1
P
IR () [y, +or < 6 /1 TR
6
which tends to zero as 7 goes to infinity. O

Proof of Theorem 3: The procedure is very similar to

that just used. The essential steps are to show that the

absolute value of the difference with the ideal response
converges to zero pointwise and that the corresponding L -
norm estimates tend to zero as n goes to infinity. The use of
Lemmas 1 and 2 within the three frequency intervals leads to
the following inequalities:

a) fe(0, 1/2):
1

|ReCt(f)—F"(f)|.—_ I—W

2
< — 4.27
e
| F"(f) - Rect (f)||L,,<o.|/2) < il (4.28)
b) fe(1/2, 1)
1
F'(f) - R O —
|F*(f) ect (f)| m
1 n+1
< \/W < ('Y/f)
< (2y)""! (4.29)
i , 1/2
| F"(f) = Rect (f)|[,a/0.0) < w1 (4.30)
where v < 1/2.
c) fe(l, +oo):
1

|F"(f) = Rect (f)]

1
< < /f n+1
oy <07
<1/fr! (4.31)

1F"(£) = Reet ()20 40 < (4.32)

np+p-1-
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V. CONCLUSION

We have considered the problem of the approximation and
interpolation of a signal using polynomial splines from a
signal processing perspective. In particular, we have shown
that the least-squares spline approximation of an arbitrary
signal can be obtained in three steps: 1) prefiltering, 2)
sampling, and 3) postfiltering. This process is, therefore,
very similar to the classical filtering/sampling /interpolation
paradigm for the representation of bandlimited signals, which
is dictated by Shannon’s sampling theorem. An aspect that
has been emphasized is that both prefiltering and interpola-
tion algorithms should be selected consistently in order to
minimize the loss of information occurring during discretiza-
tion. For instance, it turns out that the use of a conventional
anti-aliasing lowpass filter is only optimal when it is used in
conjunction with a sinc interpolator and that other prefilters
are better suited for other forms of interpolation.

We have determined the frequency responses of optimal
prefilters and their corresponding postfilters for polynomial
splines of any order using three equivalent continuous signal
representations. One of these representations uses sampled
signal values as expansion coefficients and is best suited for
conventional discrete signal processing. We have shown that
the corresponding prefilters and spline interpolators tend to
an ideal lowpass filter (pointwise and in all L ,-norms) as the
order of the splines goes to infinity. These results establish
the asymptotic equivalence with Shannon’s well known sam-
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pling theorem and provide some useful extensions for poly-
nomial splines of any order.
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