Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Texture Discrimination
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Texture Discrimination Using Wavelets

M. Unser

Proceedings of the 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'93), New York NY, USA, June 15-17, 1993, pp. 640-641.


A new approach to the characterization of texture properties at multiple scales using an overcomplete wavelet transform is described. It is shown that this representation constitutes a tight frame of l2, and that it has a fast iterative algorithm. A texture is characterized by a set of channel variances estimated at the output of the corresponding filter-bank. Classification experiments with 12 Brodatz textures indicate that the discrete wavelet frame (DWF) approach is superior to a standard (critically sampled) wavelet transform feature extraction. This result also suggests that this approach should perform better than most traditional single resolution techniques (co-occurrences, local linear transform, etc…). A detailed comparison of the classification performance of various orthogonal and biorthogonal wavelet transforms is provided. The DWF feature extraction technique is incorporated into a simple multiple-component texture segmentation algorithm. Some examples are presented.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser9306.html,
AUTHOR="Unser, M.",
TITLE="Texture Discrimination Using Wavelets",
BOOKTITLE="Proceedings of the 1993 {IEEE} Computer Society
	Conference on Computer Vision and Pattern Recognition ({CVPR'93})",
YEAR="1993",
editor="",
volume="",
series="",
pages="640--641",
address="New York NY, USA",
month="June 15-17,",
organization="",
publisher="",
note="")

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved