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W Registration and Stafisical

Analysis of PET Images
Using the Wavelet Transform

euroimaging by positron emission to-

mography (PET) is a major research
tool to investigate functional brain activ-
ity in vivo. Itis a non-invasive method that
offers a unique way of measuring the spa-
tial distribution of certain function-spe-
cific radiotracers that are injected into the
bloodstream prior to imaging. A typical
application is to measure cerebral glucose
utilization with the tracer [18F]2-ﬂuoro-2-
deoxy-D-glucose (FDG), a positron-emit-
ting analog of glucose. Other examples of
PET use are the determination of regional
cerebral blood flow, and receptor imaging
using an appropriate radioactively-la-
beled ligand [1]. The main difficulty with
the analysis of PET data is the absence of
reliable anatomical markers and the fact
that the shape and size of the brain may
vary substantially from one subject to an-
other. The task is further complicated by
a low signal-to-noise ratio, and a limited
spatial resolution.

In order to gain insight into functional
inter-relationships among the various re-
gions of the brain, a variety of statistical
methods have been developed. In earlier
studies, the data were summarized into a
series of regional rates that were typically
calculated by integrating the functional
data in a number of regions of interest [2].
Although this approach solves the prob-
lem of anatomical variability across pa-
tients, it is extremely time-consuming
because each individual region needs to be
specified manually, requiring the involve-
ment of a highly skilled operator, without
any guaranty of reproducibility. Further-
more, investigators are often tempted to
define more regions than can be analyzed
with sufficient statistical power, with the
consequence that most reports do not cor-
rect the significance levels for multiple
testing.

A more recent trend has been to look
at more global solutions to the problem,
based on the premise that the images could
all be mapped spatially onto some com-
mon reference, such as the standardized
stereotaxic coordinate framework of
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Talairach, et al. [3]. Once the brain images
are aligned with respect to each other, it is
possible to develop image-based statisti-
cal methods for detecting differences be-
tween subject groups. One of these
approaches is the statistical parametric
mapping (SPM) method of Friston, et al.,
which achieves registration through spa-
tial warping [4, 5]. This type of approach
is faced with two major difficulties that
are somewhat interrelated. The first is the
problem of registration [6, 7]. Is it entirely
reasonable to assume that there exists a
geometric transformation that maps a par-
ticular brain onto a common standard? A
proper deformation model is not presently
known. Using a model that has too many
degrees of freedom may strongly bias the
data towards the reference and obliterate
meaningful differences to be detected. On
the other hand, without sufficient model
flexibility, the different brain regions may
fail to be properly aligned. The second
difficulty with the global approach con-
sists in the development of analysis meth-
ods that have a sound statistical
foundation. This may not be an easy task
because pixels in the spatial domain are
statistically not independent, a problem
that is further aggravated by the nature of
the preprocessing transformations ap-
plied.

The purpose of this article is to present
an overview of our own methodology.
The two important processing steps are 1)
the registration of the individual brain im-
ages, and 2) the subsequent statistical
analysis in order to detect differences in
functional activity between subject
groups. What is remarkable is that the
wavelet transform plays an important role
in each of them, but for different reasons.
The registration algorithm that is de-
scribed below uses the idea of a muitire-
solution analysis, which consists of
representing a signal by a sequence of
fine-to-coarse continuous functions, pro-
viding approximations at various resolu-
tions [8]. Our approach is to match images
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onto a common standard by global affine
transformation, using a multiscale exten-
sion of the Levenberg-Marquardt non-lin-
ear optimization method. For the
registration problem, it is the concept of
an underlying continuous signal model
that is especially important. Polynomial
spline image representations are particu-
larly attractive in this context because of
their many useful properties [9]. The sta-
tistical analysis method that is presented
below uses the wavelet transform because
of its unique space-frequency localization
properties. This last application empha-
sizes the discrete interpretation of this
transform and relies on the orthogonality
property. The main advantage is that the
discriminative information gets concen-
trated into a relatively small number of
wavelet coefficients, which can be identi-
fied through statistical testing. The image
reconstructions obtained from this re-
duced coefficient set provide a relatively
uniform and noise-free visualization of
the significant between-group functional
differences.

Overview of the Procedure

Before discussing the individual com-
ponents of the system, we provide a brief
overview of the experimental procedure.

Subjects and Image Acquisition

The PET images used for this study
represent cerebral glucose utilization rates
as determined using the radioactive tracer
FDG, and were obtained from 10 patients
with alcoholic organic mental disorders
and 8 normal volunteers. For each subject,
21 slices with 128x128 pixels (pixel size
=2mm) were acquired with the NeuroPET
scanner, providing transverse and axial
spatial resolution of 7 and 11.5 mm full
width at half maximum (FWHM) (of the
point spread function), respectively, with
an interslice separation of 4 mm.

Image Registration

The first step was to register these
volumetric PET data sets with respect to
each other. In our case, we considered
single characteristic slices that clinicians
had pre-selected for the analysis (2-D
processing). These images were then
matched to a common standard at each
slice level by using the multiresolution
registration procedure described below.
The class of geometrical transformations
was restricted to the family of affine trans-
formations; i.e., any combination of trans-
lation, rotation and anisotropic scaling.
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The same approach can also be extended
for performing a full 3-D registration.

Statistical Analysis

Each group is then characterized by its
mean image, which is obtained by averag-
ing. Subtraction of the mean-images
yields the information of clinical interest,
that is, the depiction of functional differ-
ences between the alcoholic patients and
the normal volunteers. Additional rele-
vant statistical information is provided by
the within-group variance estimates. Test-
ing for significant differences in the image
domain is difficult because of the amount
of noise and the large number of variables
(128x128) that need to be considered. In-
stead, we chose to perform the statistical
analysis in the wavelet transform domain,
as described below. The main advantage
of using the wavelet transform is that it
concentrates the discriminative informa-
tion into a relatively small number of co-
efficients, without a significant loss of
spatial resolution. It is thus possible to
reduce the number of variables that need
to be tested, while also taking advantage
of the corresponding increase in signal-to-
noise ratio.

Multiresolution Image Registration

The registration problem is best stated
in a continuous framework. Let s(x) and
r(x) denote the object and reference im-
ages, respectively, which are both repre-
sented as functions of the continuous
spatial variable x = (x1, x2). Although we
limit our presentation to the two-dimen-
sional case, we have also implemented
and applied the procedures to the three-di-
mensional case. The purpose of registra-
tion is to find a spatial mapping, 7, that
geometrically transforms s into an image,
six) = (Ts)(x), that is maximally compat-
ible with the reference, r. Assuming that
we can define a meaningful metric, d(syr)
= I(Trs)(x) - r(x)ll, that measures the simi-
larity between s, and r, the task is then to
determine the transformation 7 that mini-
mizes d(Ts,r) among a certain class of
admissible transformations 7. It turns out
that even in the simplest case of transla-
tional and rotational alignment, this opti-
mization problem does not have a simple
solution; it usually necessitates the devel-
opment of iterative search techniques,
which can be computationally quite ex-
pensive [6, 10, 11]. In addition, such sim-
ple rigid body transformations are only
rigorously valid for aligning PET images
from the same subject.
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Here, we have chosen to consider the
extended class of affine transformations
that can also account for more general
distortions, such as shear or change in
aspect ratio. The general transformation
model is given by:

(Ts)(x)=s(T(x = 1)) (1)

where Tis a 2x2 (3x3 in 3-D) non-singular
matrix and ¢ a translation vector. We se-
lected this particular type of deformation
because it has a reasonably small numbers
of parameters (4+2 parameters in 2-D, and
9+3 parameters in 3-D), and yet it appears
to offer enough flexibility for performing
the most important anatomical correc-
tions. In addition, it results in a continuous
and well-behaved mapping between s and
r that has a simple physical interpretation.
We feel that having a rather constrained
deformation model is crucial to this appli-
cation because we do not want to over-dis-
tort our images nor introduce artifacts that
were initially not present in the data. In
other words, we want to stay as close as
possible to the data. The adequacy of the
model can always be checked, a posteri-
ori, by examining the various group aver-
ages as well as the error images. The only
risk with this approach is that it may
smooth out certain characteristic patterns
that occur in regions of the brain that are
not well aligned across patients.

The Polynomial Spline Pyramid

The registration problem, as it has just
been formulated, assumes that the images
s and r are continuously defined. A con-
venient way of obtaining such repre-
sentations is to fit our initial pixel arrays
with polynomial spline surfaces [12].
Such spline surfaces are made up of rec-
tangular, piecewise, polynomial sections
of degree » that are connected together in
a way that guarantees the continuity of the
function and its derivatives up to order
n-1. The main reasons for selecting such a
spline model are the following: First, the
model is uniquely determined by the value
of the surface at the grid points (cardinal
representation), essentially preserving the
2-D structure of the data. Second, polyno-
mial splines have a simple explicit form
that makes them easy to manipulate; in
particular, it is straightforward to re-sam-
ple the model (geometric transformation)
or to compute its gradient at the grid
points, as will be required by our optimi-
zation procedure. Finally, they are ideally
suited for multi-scale processing because
of their multiresolution properties [9].
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1. Reduction procedure for the spline pyramid.

At the finest resolution level, i = 0,
where the step size is one, the polynomial
spline representation is exact in the sense
that it provides a perfect fit. The corre-
sponding model parameters are the initial
pixel values,

Sg (k,l) = s(x, y)|x=k,y=l

The polynomial spline pyramid corre-
sponds to the sequence of fine-to-coarse
signal approximations {so = s,..5;i =
Ais,...s1 = Ass}, where A; represents the
projection (or approximation) operator at
resolution level i, and / is the depth of the
pyramid. Each of the functions s;(x) cor-
responds to a spline approximation with a
step size 2’ and is entirely characterized by
its samples values at the grid points

s; )= s;(x)__ys,

These coefficients are computed itera-
tively by digital filtering and decimation,
as illustrated by the block diagram in Fig.
1. The least squares prefilter, A5 acts as an

anti-aliasing filter; as the order of the
spline n increases, it converges to the ideal
half-band lowpass digital filter [13, 14].
As an example, the pyramid repre-
sentation of the test image PET/CAT scan
is shown in Fig. 2.

Higher order splines usually result in
better quality approximations, although
they require more computations and give
rise to more complicated formulas. For
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2. Example of cubic spline image pyramid (PET/CAT scan).

our experiments, we used a cubic spline
representation, which provides a good
cost/performance compromise. Figure 3
represents an enlarged representation of
the coarser level of the pyramid for both
piecewise constant and cubic spline mod-
els. Note how the quality of the approxi-
mation improves with the higher order
model, which provides a smoother surface
representation. The zero model is not ap-
propriate here because it is not even dif-
ferentiable.

Multiresolution Alignment
Procedure
Our measure of similarity between im-
ages is the Lz-norm of the difference.

Thus, the goal is to find the transformation
T that minimizes the integrated square
error between r and Ts. Our approach is to
cast this optimization problem into a mul-
tiresolution framework and to consider the
signal and reference approximations, s; =
Ajs and r; = Ajr, in a spline pyramid with
levels i=0,...,I. Starting at the coarsest
level, I, we successively solve the se-
quence of problems for i=I down to 0:

(T,,t;)=arg minllTs; 517 ()

In fact, we use a discretized version of this
error obtained by sampling these func-
tions at the grid points. The optimum
alignment parameters at scale i are deter-
mined iteratively by considering a pertur-
bation (AT, At) on the previous solution.
This procedure ultimately yields the solu-
tion to our initial problem when i=0. The
approximation problem at a given scale is
solved by using a variation of the Mar-
quardt-Levenberg least-squares optimiza-
tion algorithm, which is iterative and
requires the evaluation of the partial de-
rivatives of s; with respect to AT, and At.
This algorithm first mimics a standard
steepest descent (or gradient) procedure,
and progressively switches to an inverse-
Hessian method as the minimum is ap-
proached [15]. An important algorithmic
simplification is that the optimization is
always performed around the operating
point (T, £) = (I, 0), using the fact that the
error criterion can also be rewritten as:

g2 =Ty, —r,-II2=%Hs,- -1 3
where IT| denotes the determinant of the
matrix T. In other words, we can account
for the current transformation estimate by
modifying the reference appropriately as
we go along with the optimization. The

3. Comparison of zero order and cubic spline models at the coarser level of the pyra-

mid (x16). (a) enlarged zero order approximation, (b) enlarged cubic spline approxi-

mation.
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4. Evolution of the quadratic error per
pixel as a function of the iteration
number during the registration of the
two test images, PET/CAT scan and
Lena.

5. Example of registration of a 128x128
PET image. (a) unregistered data, (b)
reference, (c¢) reference, (d) registered
data.

only difficulty with this approach consists
in the updating of the current transforma-
tion, T, which requires the use of special
pseudo-commutativity rules. At each it-
eration, the modified reference Tri is
evaluated by re-sampling the underlying
spline surface at the new location of the
grid points; this computation uses the B-
spline representation of this function. The
advantage of this modified scheme is that
the Hessian matrix needs only to be com-
puted once per resolution level, and that
the gradient of the error criterion is a very
simple function of the spatial derivatives
of si(x) at the grid points. These quantities
can be derived by simple digital filtering
[ 16]. This makes the method substantially
faster than the standard Marquardt-Leven-
berg scheme. A detailed account of the
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algorithm for the special case of a rigid
transformation (rotation + translation) can
be found in [17]; the more general affine
case will be described in more detail in a
forthcoming article.

Registration Results

We first checked the performance of the
algorithm by applying it to some test im-
ages that were pre-distorted by translat-
ing, rotating, and scaling a standard
reference using cubic spline interpolation.
In particular, we monitored the evolution
of the normalized quadratic error crite-
rion, Eq. 3, as a function of the iteration
step. Two examples of such curves are
shown in Fig. 4. The transformation pa-
rameters for both images, (“PET/CAT”
scan and “Lena”) were ¢ =(5,10), 6=15°
(rotation angle) and A=0.8 (isotropic re-
duction factor); the processing was per-
formed using a five-level pyramid (I = 4).
The translation factors were initially set to
zero, and the matrix T set to identity. The
arrows in Fig. 4 indicate the places of
transition to the next level. It can be seen
that most iterations are spent at the coars-
est level of the pyramid and that the initial
improvement is quite progressive. Once
the algorithm switches to the next finer
scale, the convergence is extremely fast.
This near-optimal behavior is maintained
until the end. Note that a minimum of two
iterations per scale was imposed in order
to check convergence.

In all the noise-free examples that we
considered, the parameters were always
estimated with almost perfect accuracy:
Aty Aty < 107 pixels, A0 < 107 degrees,
and AN < 107, For comparison, we also
tried a single scale optimization, but this
procedure typically did not converge un-
less the initial guess was within two pixels

6. Difference images corresponding to Fig 5. (a) difference between unregistered

of the true solution. Even in this very
favorable case, the single-scale approach
took much longer than the multiresolution
implementation.

We also investigated the behavior of
the algorithm in the presence of Gaussian
additive noise [17]. The procedure turned
out to be extremely robust and its conver-
gence properties were essentially unaf-
fected. As expected, we observed a slight
loss of accuracy in the parameter esti-
mates as the amount of noise was in-
creased. However, even under the most
adverse conditions (SNR = 0 dB), the
quality of the estimation remained re-
markably good, yielding image registra-
tion within a few tenths of a pixel.

Next, we considered the application of
the procedure to real PET data. Figure 5
shows one instance of such a registration.
Here, the effect of the transformation has
been to stretch the original data along the
vertical axis, and somewhat along the
horizontal as well, as can be seen by com-
paring section (1) with section (4). The
reference is shown twice in order to facili-
tate the visual comparison, and a grid has
been added. The estimated transformation
matrix is T = ((1.053, 0.014), (-0.023,
1.093)), with a translation given by £ =
(1.7, -6.6). Figure 6 displays the corre-
sponding difference images. Note how the
error associated with the size mismatch
between data and reference disappears in
the registration process, while the overall
quadratic error is reduced by a factor of
approximately two. Figure 7 shows the
registration results for a whole data set,
together with the overall group average.
The stripe patterns and the oval frames
over some of the images are artifacts gen-
erated by the acquisition and reconstruc-
tion process. To suppress the influence of

data and reference, (b) difference between registered data and reference.

IEEE ENGINEERING N MEDICINE AND BIOLOGY

September/October 1995



7. Registration results for the full data
set including 10 alcoholics subjects (la-
beled 2, 4, 6, 8, 11, 12, 14, 15, 16, 17),
and 8 normals (labeled 1, 3, 5,7, 9, 10,
13, 18). The average of the whole data
set is shown last.

extracranial pixels, we first computed a
mask by thresholding a strongly lowpass
filtered version of the image. The optimi-
zation was then performed selectively
over the masked region of interest. Figure
8 displays .the average-differences be-
tween the alcoholic and normal groups for
the unregistered and registered case. This
final result indicates that the registration
has been truly beneficial. For example,
looking at the upper part of the image (the
frontal lobe), one can see that many fea-
tures associated with potentially imper-
fect registration have vanished. At the
same time, an area of enhanced activity in
alcoholic patients, at the back of the brain
(cerebellum), shows up more homogene-
ously. Furthermore, the highly contrasted
spot at the very back of the brain (cerebel-
lar vermis) stands out much more clearly
in the registered image than in the unreg-
istered one.

Discussion
Based on our experimental results, it
appears that the algorithm performs ex-
tremely well, at least in finding the best
affine mapping between an image and a
reference. The main computational fea-
tures that should be emphasized are the
following.
The algorithm provides extremely
accurate estimates of the registration
parameters. In a noise-free environ-
ment, the alignment is essentially
perfect. This is a consequence of a
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8. Qualitative assessment of registration performance. (a) suBtracﬁon of the group-
averages (unregistered case), (b) subtraction of the group. averages (registered case).

consistent design that uses a continu-
ous polynomial spline image model.

The multiresolution algorithm is su-
perior to its single-scale version in a
number of respects. First, it con-
verges much more rapidly because
the spatial resolution of the underly-
ing image model is adapted to the
step size of the algorithm. Second, it
is much less likely to get trapped in a
local minimum because of the
smoothing effect of the pyramid. Fi-
nally, it is much faster because most
iterations are performed at the coars-
est level of the pyramid.

The method is iterative and is there-
fore somewhat sensitive to the qual-
ity of the initial guess. However, we
found that the algorithm could easily
handle angular discrepancies as large
as 20 degrees, and translational errors
of the order of 2/ pixels, where / is the
depth of the pyramid.

The algorithm is very robust to meas-
urement noise. Even when the signal-
to-noise ratio is as low as 0 dB, it is
still possible to obtain parameter es-
timates within a few tenths of a pixel,
and less than one tenth of a degree.
Noise has almost no effect on conver-
gence because of the noise reduction
properties of spline pyramids.

While the multiscale registration algo-
rithm performs to satisfaction, it is still
somewhat unclear whether or not the class
of transformations that has been consid-
ered is sufficiently powerful to accommo-
date the most important morphological
differences between subjects. The vari-
ability of the images available for our
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study is rather large, as can be seen from
Figs. 5-8. These discrepancies have differ-
ent origins, ranging from head positioning
mismatches between the patients, imper-
fect calibration of the intensity scale, de-
tector dropouts during acquisition,
unexpected or uncontrolled stimulation
during the scans, different brain geometry
between patients, different individual ac-
tivity patterns, or different activity pat-
terns correlated with the group assignment
(alcoholic or non-alcoholic), to cite a few.
The purpose of our registration procedure
is to correct for some of the geometric
factors as they influence the repre-
sentation within the image plane. How-
ever, out-of-plane tilt, for example, was
not corrected for by these strictly 2-D
procedures. Performing a true 3-D regis-
tration should overcome some of these
limitations. There is also the possibility of
extending the class of allowablé€ transfor-
mation by introducing additional parame-
ters. Presently, while we are still in the
process of acquiring experience with real
data sets, we prefer to work with a more
conservative, yet controllable class of de-
formation models. The risk is that we may
miss certain functional differences, but we
also reduce the likelihood of generating
false positives.

Statistical Wavelet Analysis

Once the images have been registered
and the group-averages computed, we
take the wavelet transform of the between-
group differences and perform the statis-
tical analysis in the transformed domain,
as suggested in [18]. In the next section,
we provide a brief review of the wavelet
transform, emphasizing the properties that
are relevant for this particular application.
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The testing procedure is described below
with some examples of PET data analysis
provided.

Wavelet Transform
The wavelet transform decomposes a
signal into a set of orthogonal components
describing the signal variations across
scales [8, 19]. Specifically, a signal, s, is
represented by its wavelet expansion (syn-
thesis formula) as:

1
s= 2 o+ 2 2ditkvig
kezZ i=l keZ 4)
where 07 and {s; rare the orthogonal scal-
ing and wavelet basis functions. The ex-
pansion coefficients cj(k) and di(k) in Eq.
4 are obtained by inner product (analysis
formulas:

(k)= <s.0,, > &)= <s¥; > (5)

The wavelet basis functions are typically
constructed by dilation (scale index i) and
translation (index k) of the wavelet func-
tion ¥ (x).

Vi =22 k) 6)

The first term in Eq. 4 provides a coarse
approximation of our signal at the scale /,
which corresponds to the lowest level of
the pyramid in Fig. 2. The wavelet term
represents the residual error between two
approximations at scales i-1 and 7; that is,
the difference between two successive
levels of the pyramid (cf. Fig. 2). Al-
though the synthesis and expansion for-
mulas, Eqs. 4 and 5, are usually given for
continuous signals [8, 20}, equivalent ex-
pressions also exist for a purely discrete
framework [21]. In the discrete formula-
tion, which is the appropriate one here,
these formulas can be rewritten in the
following matrix form:

s=WTd )

d=Ws (8)

where s =(...,s(k),...) is the (infinite dimen-
sional) signal (or image) vector, W the
orthogonal wavelet transformation ma-
trix, and d = (... di(k)r..ditkn...ifkk
)1...) the wavelet coefficient vector. The
wavelet transform (Eq. 8) is therefore an
orthonormal transformation of our image
array s.

Rather than defining the transform ma-
trix W explicitly, it is much easier to de-
scribe the underlying decomposition
algorithm, which uses two complemen-
tary filters 4 and g. The lowpass filter &
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h cj (k)
lowpass
Cj-q (K) —
g a; (k)
highpass

9. Fast wavelet transform decomposition algorithm.

satisfies the so-called quadrature mirror
filter (QMF) conditions:

IH@)P+ 1 Ho+mP =1 (9)

H(0)=1= H(m)=0 (10)

where H(w) is the Fourier transform of A.
The highpass filter g is the modulated
version of & given by

g(k)= (=1 h(1 = k) (1)

The wavelet decomposition is imple-
mented iteratively by successive filtering
and decimation using the QMF filterbank
described in Fig. 9 [8]. Note the similarity
between the lowpass branch of the algo-
rithm (filter #) and the pyramidal algo-
rithm in Fig. 1. The decomposition is
easily extended to 2D through the use of
tensor product basis functions, which es-
sentially amounts to applying the 1D de-
composition algorithm successively along
the rows and columns of the image. An
example of wavelet transform with a
depth of 7 = 2 of our test image is shown
in Fig. 10; each wavelet sub-image (or
channel) had its gray scale linearly ex-
panded for maximum contrast display.
This example illustrates the property that
the wavelet channels in the upper right
(V), lower left (H), and lower right (D)
quadrants tend to amplify high resolution
(or, equivalently, high frequency) verti-
cal, horizontal and diagonal edges, respec-
tively. The same qualitative behavior also
applies for the mid-range frequency com-
ponents (v, h, and d). The lower resolution
image in the upper left corner is equivalent
to the level 2 image in the spline pyramid
in Fig. 2. The information at the various
scales corresponds to different frequency
bands, but the wavelet coefficients retain
a certain degree of spatial localization.

It is the space/frequency localization
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10. Example of twdimensional wavelet
transform (PET/CAT scan).

property of the basis functions that make
the wavelet transform especially attrac-
tive for this particular application. It is
reasonable to expect that the group-differ-
ences in functional activity will be rather
localized in space, but with slow changes
in intensity (essentially lowpass). For
these reasons, most of the signal contribu-
tion will be concentrated in a relatively
small number of wavelet coefficients. The
noise, on the other hand, will spread out
more evenly throughout the wavelet
space. White noise, in particular, will re-
main white within the different resolution
channels because the transformation was
selected to be orthogonal. It is thus possi-
ble to discard most of the non-significant
coefficients. This process is somewhat
analogous to applying a lowpass filter to
the inter-group difference image, with the
essential difference that the lowpass cut-
off frequency does not have to be speci-
fied beforehand, but is rather determined
by statistical testing. This also achieves a
useful data reduction, while essentially
preserving the correlation structure of the
data.
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When the spectral density of the signal
is non-increasing, the optimal wavelet
transform for maximum energy compac-
tion turns out be the ideal bandpass de-
composition (modulated-sinc wavelet)
[22]. Accordingly, we should expect wav-
elet transforms with good bandpass char-
acteristics (i.e., larger regularity indexes
or higher order splines) to be the most
efficient at detecting significant metabolic
differences. In practice, the achievable en-
ergy compaction has to be counterbal-
anced by the fact that higher order
wavelets tend to be less localized and that
bandlimited signal approximations also
give rise to Gibbs oscillations. The issue
of selecting the best transformation is
therefore essentially a matter of compro-
mise.

Another important consideration for
the efficiency of the statistical procedures
to be presented below is the correlation
structure of the wavelet coefficients. For
stationary noise, the correlation between
two wavelet channels is a function of their
spectral overlap, and is zero for the ideal
bandpass decomposition. In the non-ideal
case, the correlation can usually be as-
sumed to be negligible since it decays as
A™372 where A is the scale ratio between
resolution levels and » the number of van-
ishing moments of the transform [18].

For our experiments, we selected or-
thogonal spline (or Battle-Lemarié) wav-
elets [8, 23, 24]. This family of transforms
has the advantage of using symmetrical ba-
sis functions; it also provides a simple way
of reducing spectral overlap by increasing
the degree of the spline n. In the limit as n
goes to infinity, the Battle-Lemarié wavelets
tend to the ideal bandpass filter [24, 25].
These transforms were computed using the
fast wavelet transform algorithm shown in
Fig. 9. Explicit filter formulas and a discus-
sion of important implementation issues
such as the specification of boundary condi-
tions can be found in [26].

Statistical Analysis

The relevant clinical question is
whether or not there are statistically sig-
nificant differences between the two
group-average images, or, equivalently,
whether the test image represented by the
group-average difference is different from
noise. Here, for simplicity, we assume that
the noise is white with zero mean and
standard deviation, . The standard devia-
tion was computed by pooling the within-
group variances estimated on a pixel by
pixel basis. Note that the procedure can be
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extended for the independent non-station-
ary case by testing the data against a simu-
lated null image with a local variance that
is proportional to the corresponding pixel-
by-pixel within-group variance estimate
[18].

Results for our PET data are summa-
rized in Fig. 11. Images (a) and (b) repre-
sent the group-averages for the normal
and alcoholic subjects, respectively. Sub-
traction of those two images ((b)-(a))
yields the difference image, which is
shown in Fig. 11c. An equivalent repre-
sentation of this information is provided
by the cubic spline wavelet transform in
Fig. 11d.

In the first step of the analysis, we look
at the various wavelet channels individu-
ally and perform omnibus tests to deter-
mine whether or not they represent noise
only. These tests are independent because,
for all practical purposes, the wavelet
channels are not correlated with each
other, as indicated previously. Due to the
assumption of white noise and the ortho-
gonality of the wavelet transform, the test
statistic for each channel is a chi-square
with m degrees of freedom, where m is the
number of wavelet coefficients in the
channel. There are 3 channels ateach scale
i, each yielding m;= (128/2')2 coefficients.
With 5 resolutions to be analyzed, there
are 15 tests to be performed. To maintain
an experimentwise error rate of 5%, we
make the Bonferroni adjustment for mul-
tiple testing, and select the significance
level for each channel at a = 0.05/15. For
our particular data set, irrespective of the
degree of the spline wavelets, none of the
null hypotheses were rejected at the two
finer scales and all were rejected below
that resolution. Therefore, 3/4+3/16 =
15/16 of the total number of coefficients
could be discarded out of hand as encod-
ing image noise only.

Once the data have been found to be
significant and reduced to a statistically
significant bandwidth, we conduct a finer
analysis to locate specific differences in
the image. For this purpose, the remaining
coefficients are tested each separately us-
ing a two-sided z-test at a =0.05, which,
in this case, is equivalent to setting a sim-
ple threshold at 7=1.96 o. This test statis-
tic follows because the wavelet transform
is a linear operation, and the linear trans-
form of a Gaussian variate (the noise) is
itself Gaussian distributed. After applica-
tion of this testing procedure, the total
number of wavelet coefficients found to
be significantly different from noise were
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11. Alcoholics versus normals. (a) group-
average for the normal subjects, (b)
group-average for the alcoholic subjects,
(c) difference image [(b)-(a)] , (d) wavelet
transform of (c) [/ = 5 and n = 3].

12, Resynthesis of the between-group
difference image in Fig. 11c¢ using sig-
nificant wavelet coefficients only. (a)
zero order (Haar), (b) linear spline, (c)
cubic spline, (d) quintic spline.

N

217 (1.32%), 245 (1.49%), 249 (1.52%),
and 251 (1.53%), for spline wavelets of
order 0, 1, 3, and 5, respectively.

Figure 12 displays the reconstructed
images obtained by retaining only the sig-
nificant coefficients and applying the in-
verse wavelet transform. The zero-order
resynthesis exhibits some characteristic
blocking artifacts, while the first-order
image contains some linear streaking arti-
facts. The third-order and fifth-order re-
constructions are visually very similar and
have a much smoother appearance.

Discussion
The main difficulty with the statistical
analysis of PET data sets is the high di-
mensionality of the feature space
(128x128 pixels per image). The wavelet
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transform clearly reduces this problem
due to the preliminary data reduction that
is achieved through omnibus testing. The
decorrelation of the resolution channels
enables the application of statistical pro-
cedures that are more rigorous and more
powerful than pixel-based testing in the
spatial domain. Statistical power, and
thus, greater sensitivity, is obtained be-
cause of the partitioning of the data into
wavelet channels. Most of the discrimina-
tive information tends to be concentrated
in the lower resolution channels, which
have very few coefficients and a low vari-
ance due to the small bandwidth. This
reduces both the number of tests and the
standard error.

The wavelet transform also offers the
possibility of a finer level of analysis for
locating the major differences in metabo-
lic activity. In this example, the series of
follow-up tests was not protected for total
false-positive error rate and the results of
wavelet re-synthesis should therefore be
treated with some caution. Re-synthesis
using only wavelet coefficients retained
after Bonferroni-adjusted significance
testing (about 0.3% of the coefficients)
still resulted in the display of meaningful
regions of metabolic rate differences, very
similar to those shown in Fig. 12. How-
ever, the obvious trade-off in selecting
increasingly stricter significance levels is
that the estimates of the actual magnitudes
of these differences become more and
more biased toward lower values. Evalu-
ating the exact statistical power of the
proposed procedures and the bias of the
estimates of change will require Monte
Carlo simulation studies

Based on our experiments, the most
appropriate decomposition appears to be
the Battle-Lemarié cubic spline wavelet
transform. Since increase of the spline
order incurs a loss of localization, there is
no compelling reason for using higher or-
der splines. As far as the statistical proce-
dures are concerned, we feel that there is
still room for improvement. The first ex-
tension would be to use a slightly more
sophisticated colored noise model, which
would still allow us to take advantage of
the channel decorrelation property of the
wavelet transform. Alternatively, one
should also explore non-stationary mod-
els which appear to be better suited to
characterizing the noise contributions due
to misregistration artifacts and counting
statistics. The simplest technique that ac-
counts for the within-group variability of
the data on a coefficient-by-coefficient
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basis is a local t-test that could be applied
in the wavelet transform domain directly.
Another more general approach based on
the actually observed data would be to
generate empirical distributions for ap-
propriate test statistics of individual wav-
elet coefficients by using randomization
test procedures [27]. Such nonparametric
procedures would have the desirable prop-
erty of fully taking into account the corre-
lation structure of the image data, which
could be locally varying and still be de-
composed by the wavelet transform. This
approach would retain the advantage of
concentrating the useful information into
a relatively small number of coefficients
without much compromise in spatial reso-
lution.

Conclusion
In this article, we have described a
general procedure for the processing and
analysis of PET data. We have used the
multiresolution framework of the wavelet
transform to derive new solutions for the
two main processing steps.

The first task was to align the various
brain images using a general affine defor-
mation model. Our registration procedure
uses a continuous polynomial spline im-
age model and takes advantage of the mul-
tiresolution structure of the underlying
function spaces. This method implements
a non-linear least squares optimization
technique with a coarse-to-fine iteration
strategy that substantially improves the
overall performance of the algorithm.
Other biomedical applications that could
benefit from this algorithm include aver-
aging techniques for noise reduction in
high resolution electron-micrographs [11,
28], multimodality imaging [7], and the
alignment of autoradiographic slices for
three-dimensional volume reconstruction.

The second task was to analyze the
series of registered images and to detect
the between-group differences in metabo-
lic brain activity. We chose to take advan-
tage of the orthogonality and localization
properties of the wavelet transform. Our
approach was to apply this transform to
the group-difference image and identify
the wavelet channels that are globally sig-
nificantly different from noise. These dif-
ferences were then localized spatially
through a follow-up analysis, which con-
sidered the reduced feature set provided
by the first analysis, and tested for the
coefficients that are statistically signifi-
cant; these typically represented a very
small fraction of the initial set (1.5%).
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Resynthesis of group-difference images
based on the significant wavelet coeffi-
cients only resulted in images displaying
relatively uniform, noisy-free regions of
glucose utilization differences, with very
little reconstruction artifacts.
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