Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Quasi-Orthogonality
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Quasi-Orthogonality and Quasi-Projections

M. Unser

Applied and Computational Harmonic Analysis, vol. 3, no. 3, pp. 201-214, July 1996.


Our main concern in this paper is the design of simplified filtering procedures for the quasi-optimal approximation of functions in subspaces of L 2 generated from the translates of a function φ(x). Examples of signal representations that fall into this framework are Schoenberg's polynomial splines of degree n, and the various multiresolution spaces associated with the wavelet transform. After a brief review of the relation between the order of approximation of the representation and the concept of quasi-interpolation (Strang-Fix conditions), we investigate the implication of these conditions on the various basis functions and their duals (vanishing moment and quasi-interpolation properties). We then introduce the notion of quasi-duality and show how to construct quasi-orthogonal and quasi-dual basis functions that are much shorter than their exact counterparts. We also consider the corresponding quasi-orthogonal projection operator at sampling step h and derive asymptotic error formulas and bounds that are essentially the same as those associated with the exact least-squares solution. Finally, we use the idea of a perfect reproduction of polynomials of degree n to construct short kernel quasi-deconvolution filters that provide a well-behaved approximation of an oblique projection operator.

@ARTICLE(http://bigwww.epfl.ch/publications/unser9608.html,
AUTHOR="Unser, M.",
TITLE="Quasi-Orthogonality and Quasi-Projections",
JOURNAL="Applied and Computational Harmonic Analysis",
YEAR="1996",
volume="3",
number="3",
pages="201--214",
month="July",
note="")

© 1996 Academic Press. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from Academic Press. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved