Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Approximation Error
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Comparison of Wavelets from the Point of View of Their Approximation Error

M. Unser, T. Blu

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing VI, San Diego CA, USA, July 19-24, 1998, vol. 3458, pp. 14-21.


We present new quantitative results for the characterization of the L2-error of wavelet-like expansions as a function of the scale a. This yields an extension as well as a simplification of the asymptotic error formulas that have been published previously. We use our bound determinations to compare the approximation power of various families of wavelet transforms. We present explicit formulas for the leading asymptotic constant for both splines and Daubechies wavelets. For a specified approximation error, this allows us to predict the sampling rate reduction that can obtained by using splines instead Daubechies wavelets. In particular, we prove that the gain in sampling density (splines vs. Daubechies) converges to π as the order goes to infinity.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser9804.html,
AUTHOR="Unser, M. and Blu, T.",
TITLE="Comparison of Wavelets from the Point of View of Their
	Approximation Error",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
	Imaging: {W}avelet Applications in Signal and Image Processing
	{VI}",
YEAR="1998",
editor="",
volume="3458",
series="",
pages="14--21",
address="San Diego CA, USA",
month="July 19-24,",
organization="",
publisher="",
note="")

© 1998 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved