Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Wavelets and Filterbanks
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Wavelets, Filterbanks, and the Karhunen-Loève Transform

M. Unser

Proceedings of the Ninth European Signal Processing Conference (EUSIPCO'98), Ρόδος (Rhodes), Ελληνική Δημοκρατία (Hellenic Republic), September 8-11, 1998, vol. III, pp. 1737-1740.


Most orthogonal signal decompositions, including block transforms, wavelet transforms, wavelet packets, and perfect reconstruction filterbanks in general, can be represented by a paraunitary system matrix. Here, we consider the general problem of finding the optimal P × P paraunitary transform that minimizes the approximation error when a signal is reconstructed from a reduced number of components Q < P. This constitutes a direct extension of the Karhunen-Loève transform which provides the optimal solution for block transforms (unitary system matrix). We discuss some of the general properties of this type of solution. We review different approaches for finding optimal and sub-optimal decompositions for stationary processes. In particular, we show that the solution can be determined analytically in the unconstrained case. If one includes order or length constraints, then the optimization problem turns out to be much more difficult.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/unser9806.html,
AUTHOR="Unser, M.",
TITLE="Wavelets, Filterbanks, and the {K}arhunen-{L}o{\`{e}}ve
	Transform",
BOOKTITLE="Proceedings of the Ninth European Signal Processing
	Conference ({EUSIPCO'98})",
YEAR="1998",
editor="",
volume="{III}",
series="",
pages="1737--1740",
address="{$\mathit{P}$}{$\acute{o}$}{$\delta$}{$o$}{$\varsigma$}
	(Rhodes),
	{$E$}{$\lambda$}{$\lambda$}{$\eta$}{$\nu$}{$\iota$}{$\kappa$}{$\acute{\eta}$}
	{$\Delta$}{$\eta$}{$\mu$}{$o$}{$\kappa$}{$\rho$}{$\alpha$}{$\tau$}{$\acute{\iota}$}{$\alpha$}
	(Hellenic Republic)",
month="September 8-11,",
organization="",
publisher="",
note="")
© 1998 EURASIP. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from EURASIP. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved