Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Multiscale Orientations
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

The Marr Wavelet Pyramid and Multiscale Directional Image Analysis

D. Van De Ville, D. Sage, K. Balać, M. Unser

Proceedings of the Sixteenth European Signal Processing Conference (EUSIPCO'08), Lausanne VD, Swiss Confederation, August 25-29, 2008.


The “Marr wavelet pyramid” is a wavelet decomposition that implements a multiscale version of the complex gradient-Laplace operator. It is closely linked to a multiresolution analysis of L2(ℝ2) and it has a fast filterbank implementation. We show how the Marr wavelets, which are essentially steerable, can be used to extract a multiscale version of the structure tensor. This yields a multiscale characterization of an image in terms of various features such as local gradient energy, orientation, and coherency.

We provide an implementation of the proposed system as a Java plug-in for ImageJ, and we illustrate its applicability to directional image analysis which is useful in domains such as biological imaging and material science.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/vandeville0801.html,
AUTHOR="Van De Ville, D. and Sage, D. and Bala{\'{c}}, K. and Unser,
	M.",
TITLE="The {M}arr Wavelet Pyramid and Multiscale Directional Image
	Analysis",
BOOKTITLE="Proceedings of the Sixteenth European Signal Processing
	Conference ({EUSIPCO'08})",
YEAR="2008",
editor="",
volume="",
series="",
pages="",
address="Lausanne VD, Swiss Confederation",
month="August 25-29,",
organization="",
publisher="",
note="")
© 2008 EURASIP. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from EURASIP. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved