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ABSTRACT
The “Marr wavelet pyramid” is a wavelet decomposition that
implements a multiscale version of the complex gradient-
Laplace operator. It is closely linked to a multiresolution
analysis of L2(R2) and it has a fast filterbank implementa-
tion. We show how the Marr wavelets, which are essentially
steerable, can be used to extract a multiscale version of the
structure tensor. This yields a multiscale characterization of
an image in terms of various features such as local gradient
energy, orientation, and coherency.

We provide an implementation of the proposed system as
a Java plug-in for ImageJ, and we illustrate its applicability
to directional image analysis which is useful in domains such
as biological imaging and material science.

1. INTRODUCTION

The structure tensor is a powerful tool in image process-
ing [1] with a wide range of applications; e.g., feature de-
tection (to retrieve edges, corners, and junctions), diffusion
filtering [2], and texture analysis. The underlying principle
is to determine the orientation that best matches the local gra-
dient information. It can be applied both to scalar images, by
considering a local spatial neighborhood, or to multivalued
images, by merging the information from the various chan-
nels [3]. The tensor captures the predominant orientation of
a local image neighborhood. It also yields other useful fea-
tures: orientation, isotropy versus anisotropy (coherency),
and “cornerness”. Bigun et al. [4] also proposed a gener-
alized structure tensor for curved patterns.

The structure tensor has been extended within the scale-
space framework [5], and also combined with the wavelet
transform [6]. In the latter case, two fully redundant 1-D
wavelet transforms are applied separately along rows and
columns, respectively. The wavelets are defined as in [7];
i.e., they are the horizontal and vertical derivatives of a 2-D
smoothing function, respectively.

Recently, we have proposed a new complex wavelet basis
design that is intrinsically 2-D [8, 9]. The wavelet behaves
like a multiscale version of the complex gradient-Laplace op-
erator; i.e., the real and imaginary parts of the wavelet coef-
ficients provide the gradient information of a bandpass fil-
tered version of the image. In Sect. 2, we describe our main
computational tool, which is a slightly redundant extension
of the scheme named the “Marr wavelet pyramid”. It has
better shift-invariance and rotation-covariance for a total re-
dundancy factor of only 8/3.

In Sect. 3, we make explicit the link between the Marr
wavelet pyramid and the structure tensor. This provides a
compact multiscale tensor representation and its associated

feature measures. An advantage of our approach is that the
Marr wavelet pyramid can be reconstructed, after processing
using structure tensor information. Finally, in Sect. 4, we
demonstrate the applicability of our approach to some con-
crete image analysis tasks.

2. MARR WAVELET PYRAMID

2.1 Complex polyharmonic B-splines
Complex polyharmonic B-splines βγ,N are 2-D basis func-
tions that are associated with the family of complex gradient-
Laplace operators

Lγ,N = (−∆)
γ−N
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where γ ∈R+ and N ∈N. Let us consider the scaled approx-
imation spaces

Vi = span
{

2i
βγ,N(2ix−k)

}
k∈Z2 . (2)

Applying the operator Lγ,N to a signal of Vi,

si(x) = ∑
k∈Z2

ci[k] 2i
βγ,N(2ix−k), (3)

results into a train of weighted Diracs, which indicate the
knots of the polyharmonic spline.

The fundamental link between the continuous-domain
operator Lγ,N and the complex polyharmonic B-spline βγ,N
is also reflected in its Fourier domain definition:

β̂γ,N =
Vγ,N(e jωωω)
L̂γ,N(ωωω)

, (4)

where the numerator Vγ,N(e jωωω) is the localization filter,
and the denominator L̂γ,N(ωωω) = ||ωωω||γ−N (ω1 − jω2)N is the
Fourier transform of (1) in the distributional sense.

The localization filter should regularize the singularity of
the Fourier transform at the origin. To that aim, we consider
the polar representation Vγ,N(e jωωω) = Vγ(e jωωω) ·e jθN(ωωω) and we
specify the modulus and phase as
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θN(ωωω) = ∠( j[ω1]− j[ω2])N ,



where [ω] stands for the unique ω in [−π,π[ such that ω −
[ω] = 2nπ for some integer n.

Notice that the choice of our localization filter is different
from [8], where the phase at the origin was not compensated
(i.e., θN(ωωω) = 0). Our construction is also such that βγ,0 = βγ

coincides with the isotropic polyharmonic B-splines [10] that
were earlier introduced as extensions of the elementary poly-
harmonic B-splines [11].

The complex polyharmonic B-splines satisfy all the re-
quirements for generating a dyadic multiscale analysis of
L2(R2) [8]: their integer shifts form a Riesz basis; they sat-
isfy the partition of unity property; and they satisfy a scaling
relation. The latter can be expressed in the Fourier domain
as

β̂γ,N(2ωωω) =
1
2

H(e jωωω)β̂γ,N(ωωω), (5)

where H(e jωωω) is the scaling filter. So the approximation
spaces are be embedded as

. . .Vi−1 ⊂ Vi ⊂ Vi+1 ⊂ . . .L2(R2). (6)

We denote approximation coefficients at scale i as ci[k].

2.2 Complex polyharmonic wavelet basis
Based on the complex polyharmonic B-splines, we have
shown that it is possible to construct a semi-orthogonal
wavelet basis1:

Wi−1 = Vi	⊥Wi

= span
{

2i
ψγ,N(2ix−k/2)

}
k∈Z2\2Z2 .

The fundamental observation is that computing the wavelet
transform of a signal is equivalent to applying a multiscale
version of the operator (1).

Notice that the same wavelet is spatially shifted on the
(non-zero) coset positions; i.e., the grid Z2\2Z2 at scale −1.
Consequently, the corresponding filterbank, shown in Fig. 1,
can be implemented using a single wavelet filter W (z) that
links the generating wavelet function to the scaling function:

ψ̂γ,N(2ωωω) =
1
4

W (e jωωω)β̂γ,N(ωωω). (7)

The filters at the synthesis side are derived from the perfect
reconstruction condition or from considering the dual scaling
function and wavelet (in the same spaces). Notice that all
filters are non-separable.

2.3 Marr wavelet pyramid
The Marr wavelet pyramid is a slightly redundant version
of the complex polyharmonic wavelet basis. It includes the
“missing” shift from the previous construction and corre-
sponds to the enlarged analysis spaces

W +
i−1 = span

{
2i

ψγ,N(2ix−k/2)
}
k∈Z2 . (8)

This leads to a pyramid-like decomposition structure which
has an overall redundancy factor of 8/3. We have also chosen
the parameters γ = 3, N = 1, which correspond to the pure

1The quincunx case is treated in [8], while the wavelet design for more
general subsampling matrices is dealt with in [9].
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Figure 1: Filterbank implementation of the (non-redundant)
complex polyharmonic wavelet basis (analysis side). The
vectors ek, k = 1,2,3, represent the non-zero coset positions
of the dyadic subsampling matrix; i.e., [0 1]T , [1 0]T , [1 1]T .
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Figure 2: Filterbank implementation of the Marr wavelet
pyramid (analysis side).

complex gradient-Laplace operator. A further refinement is
to use the available redundancy to improve its steerability.
Specifically, we select the modified analysis wavelet

ψ(x/2) = ∆
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}
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where β6,0 is the isotropic polyharmonic B-spline, which
converges to a Gaussian as γ increases. Practically, this
amounts to the filterbank for this pyramid-style decomposi-
tion is shown in Fig. 2. The shaping filter A3(z) corresponds
to the B-splines autocorrelation filter, which is given in the
Fourier domain by

Aγ(e jωωω) = ∑
k

∣∣∣β̂γ(ωωω +2πk)
∣∣∣2

. (10)

The synthesis side is performed by projecting the redun-
dant representation onto the basis again according to the sub-
band regression principle [12].

The wavelet coefficients at scale i are denoted as di[k]
and correspond to

di[k] =
〈

f ,2i
ψ(2ix−k/2)

〉
. (11)

We coin the term “Marr wavelet pyramid” for the pro-
posed decomposition as it closely mimicks the basic opera-
tions of David Marr’s framework for early vision [13]. We
refer to [9] for more details.



3. MULTISCALE STRUCTURE TENSOR

3.1 From Marr wavelet pyramid to multiscale tensor
To establish the link between the Marr wavelet pyramid and
the structure tensor, let us first reconsider the wavelet coeffi-
cients of (11), using (9), as[

Im(di[k])
Re(di[k])

]
= 2i

[
∂/∂x1
∂/∂x2

]
︸ ︷︷ ︸

∇

∆
{(
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}︸ ︷︷ ︸
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.

Notice that gi(k) corresponds to a bandpass version of f (x),
sampled at rate 2−i−1. The equivalent standard deviation of
the smoothing kernel β6(2i·) is

√
2−i−1.

The multiscale structure tensor can now be introduced as
a 2×2 symmetric, nonnegative definite matrix

Ji(k) = ∑
n∈Ω

w[n]
(
∇gi(k+n)∇gi(k+n)T )

, (12)

where the weights w[n], n ∈ Ω, define a non-negative sym-
metric observation window (typically Gaussian). Notice that
each element of Ji[k] is a weighted inner product 〈·, ·〉w be-
tween derivatives of gi. The associated norm of the derivative
of gi along any direction u = [cosθ sinθ ]T can then be ob-
tained as

||Dugi||2w =
〈
uT

∇gi,∇gT
i u

〉
w = uT Jiu. (13)

Therefore, maximizing (13) under the constraint ||u|| = 1
yields the eigenvector equation. The direction of maximal
change is indicated by the eigenvector v+ which is associ-
ated with the largest eigenvalue λ+. The smallest eigenvalue
λ− is zero, while the eigenvector v− is perpendicular to v+.

While the wavelet coefficients di[k] reflects the local be-
havior (due to the smoothing kernel), the tensor representa-
tion needs multiple observations (through the window w[n])
to become full rank. In the case of identical wavelet coeffi-
cients di[n], n ∈ Ω, or of a window w[n] = δn, the tensor’s
rank will be one. The original coefficient can then be re-
trieved, up to its sign, as

di[k] =±
√

λ+[ j 1]v+. (14)

The essential information of the structure tensor (that is,
the eigenvalues λ+,λ− and the direction θ of minimal in-
ertia) can be obtained directly from the Marr wavelet coeffi-
cients, which exploits the link with complex moments similar
to the procedure in [4]; i.e., we have

M(1)
i (k) = 2−2i〈di[k+ ·],di[k+ ·]〉w = (λ+−λ

−)e j2θ ,

M(2)
i (k) = 2−2i〈|di[k+ ·]| , |di[k+ ·]|〉w = λ

+ +λ
−,

without the need to construct Ji(k).

3.2 Features from the structure tensor
There are various measures associated with the structure ten-
sor that have been proposed to characterize local image con-
tent. Thanks to our multiscale framework, these can be
obtained at various scales and positions. From M(1)

i (k),
M(2)

i (k), the most popular structure tensor features can be
derived as:

• Energy. The local gradient energy is given by the trace

energy = λ
+ +λ

− = M(2)
i (k). (15)

• Orientation. The direction of minimal inertia is indicated
by:

θ =
argM(1)

i (k)
2

. (16)

• Coherency. The coherency measure reveals the degree of
anisotropy of the local structure:

coh =
λ+−λ−

λ+ +λ− =

∣∣∣M(1)
i (k)

∣∣∣
M(2)

i (k)
, (17)

which ranges from 0 to 1. Large coherency indicates one
dominant orientation, small coherency indicates isotropy.

Many other feature measures exist, such as for corners and
junctions; e.g., the Harris corner detector [14].

4. RESULTS

4.1 Examples
In Fig. 4, we first show the Marr wavelet pyramid decom-
position for the test image of Fig. 3. The orientation of the
complex wavelet coefficient di[k], wrapped within the inter-
val [0,π], is shown in Fig. 5 (a). It also corresponds to the
direction of the eigenvector v+ for the case w[n] = δn.

By contrast, the structure tensor is computed using a
Gaussian averaging window, which is more reliable for fea-
ture detection and texture analysis. Here, we used a Gaus-
sian window with standard deviation σ = 1.5. The tensor
orientation, shown in Fig. 5 (b), gives a much more robust
impression of the local direction than in Fig. 5 (a). Finally,
in Fig. 5 (c), we have combined the three features in a single
image using the HSB channels: hue for orientation, satura-
tion for squared coherency, and brightness for energy. In-
terestingly, the zoneplate components, which have most of
there energy in the second subband (scale i = −2), are in-
deed clearly visible at that scale.

4.2 ImageJ plug-in
We have implemented the proposed approach in Java as a
plug-in for ImageJ2, which is freely available to the image
processing community. In Fig. 6, we show a screenshot of the
application dialog window and the result when analyzing a
biological test image. The various parameters of the method
and the color encoding for visualization can be configured in
a flexible way.

5. CONCLUSION

We have proposed a multiscale version of the structure tensor
that is based on the Marr wavelet pyramid, a pyramid-type
wavelet decomposition with limited redundancy (i.e., a factor
8/3). This tool can be useful for efficient directional image
analysis and tensor-based processing. Further on, using the
Marr wavelet pyramid allows to reconstruct the image, after
processing based on structure tensor information.

2http://bigwww.epfl.ch/demo/orientation/



Figure 5: Features from the multiscale structure tensor derived from the Marr wavelet pyramid in Fig. 4 (the orientation
is encoded in the hue channel). (a) Orientation without neighborhood (N = 1). (b) Orientation with Gaussian observation
window (σ = 1.5). (c) Combined features from the multiscale structure: orientation in hue, squared coherency in saturation,
and local energy in brightness.

Figure 3: “Psychedelic Lena”: combining “Lena” with con-
centric zoneplate images (of constant frequency) positioned
on both eyes. Figure 4: Marr wavelet pyramid for the test image of Fig. 3.



Figure 6: Screenshot of the ImageJ plug-in at work on a biological test image. The Gaussian observation window was set for
σ = 1.5. The various color mapping correspond to (from left to right): (1) hue: orientation, saturation: coherency, brightness:
original image; (2) hue: orientation, saturation: coherency, brightness: energy; (3) hue: orientation, saturation: coherency,
brightness: maximum. The image is courtesy of Caroline Aemisegger (Zentrum für Mikroskopie und Bildanalyse, Zürich); it
shows actin fibres of the cytoskeleton by immunofluorescence.
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