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Nonlocal Means With Dimensionality Reduction and
SURE-Based Parameter Selection

Dimitri Van De Ville, Member, IEEE, and Michel Kocher

Abstract—Nonlocal means (NLM) is an effective denoising method that
applies adaptive averaging based on similarity between neighborhoods in
the image. An attractive way to both improve and speed-up NLM is by
first performing a linear projection of the neighborhood. One particular
example is to use principal components analysis (PCA) to perform dimen-
sionality reduction. Here, we derive Stein’s unbiased risk estimate (SURE)
for NLM with linear projection of the neighborhoods. The SURE can then
be used to optimize the parameters by a search algorithm or we can con-
sider a linear expansion of multiple NLMs, each with a fixed parameter
set, for which the optimal weights can be found by solving a linear system of
equations. The experimental results demonstrate the accuracy of the SURE
and its successful application to tune the parameters for NLM.

Index Terms—Linear transforms, nonlocal means (NLM), principal com-
ponent analysis (PCA), Stein’s unbiased risk estimate.

1. INTRODUCTION

Learning from neighborhoods has become an important and
powerful data-driven approach for various applications in image
processing. Most notably, the nonlocal means (NLM) [1] algorithm
applies adaptive averaging based on similar neighborhoods in a
search region. Various methods have been proposed to accelerate the
initial approach using preselection of the contributing neighborhoods
based on average value and gradient [2], average and variance [3] or
higher-order statistical moments [4], cluster tree arrangement [5], and
[6], [7]. The computation of the distance measure between different
neighborhoods itself can be optimized using the fast Fourier transform
[8], a moving average filter [9], [10], early termination of the search
[11], or by reducing redundant comparisons [12].

Variations of the NLM algorithm have also been proposed to
improve the denoising performance; e.g., adaptive neighborhoods
[13], iterative application [5], combination with kernel regression [14]
and spectral analysis [15], and other similarity measures based on
principal component analysis (PCA) [6], [16] or rotation invariance
[17]. The smoothing parameter that determines the contributions of
the patches has been locally optimized using Mallow’s C,, statistic
[18]. The most evolved version of the nonlocal principle is probably
BM3D [19], which further processes the selected neighborhoods and
gives high quality results.

The combination of NLM with dimensionality reduction methods
such as PCA [6], [16] and SVD [7] has gained increased interest since
the advantages are twofold. First, the computational complexity is
highly reduced. Second, measuring the distance between neighbor-
hoods in a lower-dimensional subspace improves robustness to noise;
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e.g., results for NLM denoising for a 7 x 7 neighborhood are clearly
improved by reducing the 49 dimensions to 5-10. Moreover, Tasdizen
[20] proposed the combination of PCA and NLM with parallel analysis
to select the dimensionality [21].

Stein’s unbiased risk estimate (SURE) [22] is one elegant way to es-
timate the mean squared error (MSE) of an image degraded by additive
Gaussian noise. Following this principle, one can select optimal pa-
rameters for regularization in inverse problems [23]-[25], in denoising
strategies for wavelet thresholding [26]—[28], or using a numerical pro-
cedure for denoising approaches in general [29]. In recent work, we
derived an analytical form of SURE [22] for the NLM algorithm [30].
This way, the MSE can be monitored from the noisy image only, which
is a very useful property to optimally tune the NLM algorithm. This
concept can also be used to locally adapt the NLM parameters [12].

Here we further extend the analytical form of the SURE for NLM
with linear projection of the neighborhoods, including projection on
a dimensionality-reduced subspace as specified by PCA. Since the
PCA-NLM algorithm depends nonlinearly on the different parameters
(neighborhood size, width of smoothing kernel, search region, PCA
dimensionality), we propose to optimize a linear expansion of several
NLMs with different parameter settings; an approach that is inspired
by the SURE-based linear expansion of thresholds (LET) proposed
for wavelet denoising [31]. In our case, the optimal linear combina-
tion can be retrieved using the SURE of the individual PCA-NLM
contributions.

In Section II, we briefly review the NLM algorithm and the SURE
principle, together with the extension of SURE for NLM with linear
projection. We also show how a linear expansion of multiple NLMs re-
duces to solving a linear system of equations. Next, in Section III, we
present and discuss the experimental results to demonstrate the feasi-
bility of using SURE for NLM parameter selection.

II. METHODS

A. Nonlocal Means Algorithm

We consider the observation model
(1

where x € RY stands for the vector representation of the noise-free
image containing IV pixels, n is the zero-mean white Gaussian noise of
variance oI, and y is the observed noisy data. We denote the grayscale
value of the individual pixel at position 1 € 7 as y;, where we implic-
itly assume that vector indexing is mapped to a scalar index (e.g., using
lexicographic ordering); this notation better reflects the spatial depen-
dencies of the image. The pixel-based NLM algorithm [1] is a spatially
adaptive filter that maps the measured data y into X as follows:

_ Zkesl Wk 1Yk
Zkesl Wk, 1

where S is the search region around 1 and wy ) are the weights that
compare the neighborhoods around pixels k and 1, respectively. The
weights are defined as

< Y ben(Ukib — 'y1+b)2>
Wk, = €exXp | —

y=X-+n

(@)

1
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where B defines the neighborhood and B is its total size; e.g., B =
[-3,3] x [—3,3] and B = 49 for a 7 x 7 neighborhood.
B. Mean Squared Error and Stein’s Unbiased Risk Estimate

The mean squared error (MSE) of the denoised image with respect
to its noise-free version is

1 . 1 N
= V X — X”2 = T Z(Tl — ,T‘])Q
- ez

MSE(%)

“
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where || - ||* is the Euclidean norm. The peak signal-to-noise ratio
(PSNR) is then defined as

PSNR(MSE(%)) MSE(%)

peak?

= —10log, (%)
where the denominator indicates the peak intensity value of the image.
SURE provides a means for unbiased estimation of the true MSE. It is

specified by the following analytical expression [22]

. 1 . dived%
SURE(%x) = ﬁ”y — %)% = 02 + 202 l\ly\f{X} ©

where divy {X} is the divergence of the NLM algorithm with respect

to the measurements
. o o0
divy{x} = IZ Em
=
which needs to be well defined in the weak sense. The derivation of
SURE relies on the additive white Gaussian noise hypothesis and as-
sumes the knowledge of the noise variance ¢ 2. In practice, o> can be
easily estimated from the measured data (e.g., using the median of ab-
solute deviation). The SURE-based PSNR, which we will name SURE-
PSNR from now on, can then be computed as PSNR(SURE(x)).
In previous work, we derived the analytical form of SURE for
NLM [30]

@)

SURE(x)
= Sy - % - o
=Ny
+ 2 3w %I +“"22L
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where W = Zke 5 Wil and where :>/<3 is the NLM algorithm applied
to the squared pixel values. The computation of the divergence term can
be readily incorporated within the core of the NLM algorithm. Specifi-
cally, implementing (8) requires an additional memory array to store 7
(next to W), and its computational complexity takes only O(B - V)
operations, compared to O(B - N - S) of the NLM algorithm itself,
where S is the number of pixels in the search region.

C. Nonlocal Means for Transformed Neighborhoods

Instead of using directly the pixel values of the neighborhoods as
positions in the high-dimensional space, an appealing alternative is to
first transform the neighborhoods in another domain with some favor-
able properties. For example, the computational burden of the NLM
algorithm can be alleviated by projecting the neighborhood into a sub-
space of lower dimensionality as determined by PCA [6], [16], [20].
Specifically, the projection matrix A that diagonalizes the demeaned
covariance matrix of all patches in the image is computed. Then, each
neighborhood centered around k can be projected onto the vector px =
[Pk,n]n=1,.., 5 thatisin a subspace with B’ dimensions with B’ < B

Pkon = Z anbYktb, n=1,...,B" )

benB

The only adaptation to the NLM algorithm is to redefine the weights as

R’ 9
Wk, 1 = exXp <_ Zn:l(pk,n _]]l,n) ) .

B’ 2)2
The use of dimensionality reduction (B’ < B) can significantly
speed-up the algorithm. Here we extend the derivation of the SURE
for the case of PCA-based NLM. The first step consists of deriving the
divergence term.

10)
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Fig. 1. Results for the “peppers256” test image corrupted with additive white noise of o = 50. (a) Original image. (b) Noisy image. (c) Results obtained with
BM3D [19]. Without dimensionality reduction (no PCA): (d) 1 NLM, exhaustive optimization; (¢) 12 NLMs with fixed parameters, optimal linear expansion using
SURE; (f) 12 NLMs with Monte-Carlo generated parameters, optimal linear expansion using SURE. With dimensionality reduction (6 PCs): (g) 1 NLM, exhaustive
optimization; (h) 12 NLMs with fixed parameters, optimal linear expansion using SURE; (i) 12 NLMs with Monte-Carlo generated parameters, including PCA

dimensionality B’, optimal linear expansion using SURE.

Proposition 1 (Divergence of NLM With Linear Transform): The
individual terms of the divergence divy {X } of the NLM algorithm after
transforming the neighborhoods according to (9) are given by

B’

o 1
W nz:dn,o Z

=1 keS)

B’
SD I RN
— I n,0 5o Pk,n
; B/)\Q )
n=1

kES,
1
+ W Z W1—b,1

w1
Bre VkPlon 1

bes
BI

X Z(pl—b,n = P1n)n b{(Z1 — Y1—b) 11)
n=1

Given our vector-indexing, it is important to note that the element a,, o
correspond to the weight of the projection matrix A for the center po-

sition in the neighborhood contributing to the projection on the nth
component.

Proposition 2 (SURE for NLM With Linear Transform): The SURE
for the NLM algorithm can be expressed as

1
SURE(%) = Nlly —x|)? -a’
252 1 [&
+ ZVBI_)\Z IEZI m ;dn,o

B’
1y2 .
+ BX — 7 E [ E Wk 1Pk ,n

Z Wk 1Yk Pk, n

keS

n=1 kesS
+ Z W1—b,1
beBb
B/
X Z(plfb,n — PLn)n b {1 — Y1-b) (12)
n=1
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Fig. 2. Results for the “lena512” test image corrupted with additive white noise of o = 20. (a) Noisy image. (b) Results obtained with BM3D [19], PSNR 33.05
dB. (c) Best result obtained with the proposed method using dimensionality reduction (6 PCs) and 12 NLMs with Monte-Carlo generated parameters, including
PCA dimensionality B’, optimal linear expansion using SURE, PSNR 32.53 dB.

Note that this expression is valid for any linear transformation of the
neighborhood, with or without dimensionality reduction. The compu-
tational complexity for obtaining SURE has increased with respect to
(8);i.e.,itisnow O(B’- N - S), which is of the same order as the NLM
algorithm. However, the operations of (12) can be incorporated in the
core loop of the NLM algorithm.

D. Selection of Best NLM

Using the proposed SURE for NLM, we are able to compare the
performance of NLMs with different parameter sets (B, B', S, \), in
order to improve the denoising capabilities.

E. Linear Expansion of Multiple NLMs

Another possibility is inspired by the approach from [31]: we con-
sider the linear combination of the outputs of several NLMs with and
different fixed parameter sets, and we optimize these linear weights by
SURE to hopefully exceed the performance of each NLM taken indi-
vidually. Specifically, we consider the linear expansion approach as

M

k=" %™

m=1

13)

In our case, %" is the mth NLM with parameter set
(B, B, Sm, Am) and ¢, is the weight in the linear expansion. The
optimal weights are obtained by minimizing the SURE of the linear

combination. From (6)
1 20% .o
SURE(%) = +-(x—¥)  (x—y) = o* + %dlvy{x} (14)
the partial derivatives towards the weights c,,, are then given by

M
E(x :

{")S%fc{ x) _ chﬁ(m)Tf((l) —yT5™ 4 o2 div, {ﬁc(m)} (15)
T l:l

which leads to the following system of equations:

M

>

=1

cr (T

30 = y12™ 5245y, {5{(””} om=1.....M (16)

where the derivation of the SURE provides us with the divergence
terms. We can then find the linear weights that optimize the SURE of
the linear expansion efficiently.

III. RESULTS AND DISCUSSION

We describe how SURE for NLM can be successfully deployed
for automatic parameter selection following various optimization

TABLE I
HEURISTIC CHOICE OF PARAMETERS FOR EACH OF THE NLM WHEN
PERFORMING LINEAR EXPANSION OF MULTIPLE ONES

neighborhood B search region S smoothing \/o
1 3x3 21 x 21 0.7
2 5X5 21 x 21 0.7
3 X7 21 x 21 0.7
4 3x3 21 x 21 0.4
5 5%X5 21 x 21 0.4
6 TXT 21 x 21 0.4
7 3x3 5x5 1.0
8 5X5 5x5 1.0
9 TxXT7 5x5 1.0
10 3x3 11 x 11 0.85
11 5X5 11 x 11 0.85
12 TXT 11 x 11 0.85

strategies. In the various experiments, the parameter space that we will
sample from is as follows:

* neighborhood B =3 x 3,5 x 5,7 x 7,s0 B = 9,25, 49;

« dimensionality of projection B’ = 6,7,..., B;

e searchregionS =5x5,7%7,...,21x21,s05 = 25,49, 441,

 smoothing parameter A\/¢ = 0.5,0.6,...,1.2.
All results discussed in detail below are summarized in the Table II. We
also show some visual examples for the “peppers” test image, Fig. 1(a),
corrupted with additive Gaussian noise of ¢ = 50, Fig. 1(b), and the
“lena” test image corrupted with noise of & = 20, Fig. 2(a).

A. Exhaustive Optimization

As a starting point, we perform an exhaustive optimization for a
single NLM to determine the best parameters (B*, S*, \*) for B’ = B
(which corresponds to no PCA dimensionality reduction) and B’ = 6,
respectively. The global optimum within this parameter space is found
by choosing the settings corresponding to the best SURE-PSNR, which
coincides with the optimal setting for the ground-truth PSNR for all
test images and noise levels. Moreover, SURE-PSNR was always close
within 0.10 dB to the true one—see the results in the rows “1 NLM”
in Table II. The best parameter setting of the NLM varied with the test
image and with the noise level, which indicates the importance of a
data-adaptive strategy such as obtained using SURE. It is surprising
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TABLE II
PERFORMANCE OF THE VARIOUS APPROACHES AS MEASURED BY PSNR AND SURE-PSNR (BETWEEN PARENTHESES)

cameraman (256 X 256)

o=20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
1 NLM 29.65 (29.51) M 29.82 (29.66) (1 24.59 (24.45) 25.09 (25.06) (D

1 NLM + self (2 29.73 (29.62) (1 29.84 (29.72) (1)

29.82 (29.68) (4)

25.07 (24.89) (1) 25.10 (25.07) (V) 25.40 (25.25) 4

3 NLM + self (3:3)
6 NLM + self (2:3)
12 NLM + self (2:3)

29.69 (29.60)
29.76 (29.69)
29.97 (29.87)

29.31 (29.67)
29.91 (29.80)
30.04 (29.92)

24.88 (24.71)
24.99 (24.84)
25.09 (25.07)

25.47 (25.35)
25.53 (25.39)
25.60 (25.49)

3 NLM + self &9
6 NLM + self (24)
12 NLM + self (>4

29.81 (29.63)
29.90 (29.78)
29.66 (30.17)

30.02 (29.88)
30.08 (29.94)
30.09 (29.97)

29.99 (29.82)
30.03 (29.91)
30.09 (29.95)

25.19 (24.94)
2543 (25.21)
25.20 (25.56)

25.46 (25.30)
25.52 (25.39)
25.59 (25.52)

25.53 (25.36)
25.64 (25.52)
25.79 (25.91)

BM3D 30.48 (N/A) 25.84 (N/A)
house (256 X 256)
o=20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
I NLM 32.02 (32.00) D 32.81 (32.84) (D 26.37 (26.42) (D 28.41 (28.45) (D

1 NLM + self (2) 32,11 (32.13) (D 32.81 (32.84) (D

32.78 (32.82) 4

26.97 (27.04) (1 28.41 (28.47) (1 28.06 (28.37) ()

3 NLM + self 23
6 NLM + self (2:3)

3220 (32.22)
32.20 (32.23)

32.36 (32.40)
32.73 (32.81)

26.69 (26.80)
26.78 (26.88)

27.86 (28.11)
28.27 (28.55)

12 NLM + self (33 32.33 (32.44) 32.60 (33.25) 27.05 (27.46) 27.52 (30.70)
3 NLM + self 34 32.28 (32.30) 32.62 (33.00) 32.79 (32.77) 27.17 (27.33) 28.01 (28.59) 27.84 (28.01)
6 NLM + self (2:4) 32.48 (32.44) 32.78 (33.17) 32,90 (32.94) 27.49 (27.71) 28.00 (29.32) 27.85 (28.15)

12 NLM + self (4 32.23 (32.84) 32.67 (33.50)

32.98 (33.01)

27.72 (28.01) 27.37 (30.45) 28.20 (28.50)

BM3D 33.77 (N/A) 2937 (N/A)
peppers (256 x 256)
o =20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
1 NLM 30.37 (30.37) D 3071 (30.72) (D 25.41 (2535 M 26,51 (26.53) (D

1 NLM + self (2) 30.49 (30.49) (O 3071 30.72)

30.74 (30.73) 4

2573 (2567) (D 2651 (26.54) D 26.47 (26.54) (D

3 NLM + self (23)
6 NLM + self (2:3)
12 NLM + self (2:3)

30.09 (30.14)
30.09 (30.15)
30.85 (30.87)

30.42 (30.43)
30.64 (30.71)
31.01 (31.09)

25.20 (25.17)
25.27 (25.25)
26.05 (26.10)

26.17 (26.32)
26.38 (26.53)
26.53 (26.99)

3 NLM + self (24 30.76 (30.76) 30.83 (30.87)

30.97 (30.95)

26.03 (26.02) 26.51 (26.56) 26.48 (26.49)

6 NLM + self (24) 30.80 (30.79) 31.05 (31.09) 31.02 (31.01) 26.34 (26.36) 26.43 (26.79) 26.59 (26.65)
12 NLM + self 3% | 30.73 (31.37) 31.05 (31.13) 31.06 (31.25) 26.45 (26.47) 26.52 (27.00) 26.70 (27.00)
BM3D 31.29 (N/A) 26.41 (N/A)
Lena (512 X 512)
o =20 o =50
method no PCA 6 PCs variable PCs no PCA 6 PCs variable PCs
1 NLM 31.54 31.59) D 3214 (32.17) (D 26.94 (26.89) (D 28.33 (28.30) D

1 NLM + self (2) 31.65 31.67) D 32,15 (32.18) (1)

32.03 (32.10) 4

27.30 (27.27) (M 28.33 (28.30) (1 28.19 (28.20) (V)

3 NLM + self 33
6 NLM + self (2:3)
12 NLM + self (2:3)

31.39 (31.43)
31.41 (31.46)
31.98 (31.98)

31.94 (31.97)
32.14 (32.15)
32.34 (32.34)

27.02 (27.00)
27.08 (27.05)
27.57 (27.59)

28.06 (28.05)
28.28 (28.23)
28.39 (28.37)

3 NLM + self 39
6 NLM + self (2:4)
12 NLM + self (2:4)

31.94 (31.95)
31.91 (32.12)
31.77 (32.29)

32.26 (32.29)
32.34 (32.38)
32.40 (32.43)

32.28 (32.33)
3239 (32.42)
32.53 (32.56)

27.39 (27.38)
27.88 (27.89)
27.14 (28.49)

28.54 (28.50)
28.55 (28.52)
28.60 (28.57)

28.46 (28.42)
28.39 (28.52)
28.59 (28.61)

BM3D

33.05 (N/A)

28.86 (N/A)

: exhaustive optimisation of the NLM parameters
: optimisation of the linear expansion using SURE
: heuristic choice of NLM parameters according to Table I

W N

that dimensionality reduction of the patches onto 6 principal compo-
nents (PCs) improved the performance with 0.5-1.1 dB. Visually, this
difference is also striking as can be observed by comparing Fig. 1(d)
and (g). Moreover, next to the performance gain, the computational
complexity of PCA-NLM with 6 PCs is reduced with almost one order
of magnitude (factor of 6/49).

One way to improve the NLM method is to change the weight of the
central pixel, which is overestimated in the classical NLM formulation;
i.e., wy,1 is always at the maximum of one, which is independent of the
noise level since the same two noise realizations are compared. This
possibility has been mentioned by various authors and solved in dif-
ferent ways; e.g., the NLM weights can be estimated using the SURE
principle as in [32]. Here, we propose to add the original (noisy) image
to the set of images of the linear expansion. This image’s weight will be
determined by SURE and turns out to be negative in practice in order
to lower the importance of the central pixel!. This way we easily obtain
the optimal weights of the two contributions that result in the best per-
formance. Despite the face that providing the noisy image improves the

Providing the noisy image itself to the linear expansion corresponds to
adding the output of the identity operator, for which holds divy (%) = N.

: Monte-Carlo generation of the NLM parameters (best out of 10 realizations)

results for the NLM without dimensionality reduction, especially for
high noise levels, the PCA-NLM method does not improve by doing
so. This can be explained by the fact that the projection onto the most
important components of the patches automatically also removes the
sole influence of the central weight because none of the PC vectors will
be localized at the central pixel of the patch. These results are listed in
the rows “1 NLM + self” in Table IIL.

B. Heuristic Optimization

Given the improvement by adding a proportion of the original noisy
image with the weight determined by the SURE, it is tempting to add
more NLMs to the linear expansion. However, finding the optimal pa-
rameters of all NLMs jointly becomes unfeasible. Therefore, in the next
series of experiments, we verify how the performance can be further
improved by linearly combining the outputs of multiple NLMs, each
one with predefined parameter set. In particular, when more NLMs
are added, the parameter set is chosen according to Table I; i.e., we
used 3, 6, and 12 NLMs, respectively, each time together with the orig-
inal noisy image. The results are listed in Table II in the rows with
the label™® . For the case without dimensionality reduction, increasing
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Fig. 3. Average PSNR (with respect to ground truth) over 10 realizations of NLM linear expansions with 12 NLM and Monte-Carlo generated parameters
(B, S, ). The SURE-PSNR (not indicated) is very close to the true PSNR (within 0.10 dB). (a) Noise level of o = 20. (b) Noise level of ¢ = 50.

the number of NLMs always improved results. For the case with di-
mensionality reduction, the improvement from 6 to 12 NLMs becomes
less significant. In some cases (e.g., “house” with dimensionality reduc-
tion), the SURE-PSNR improved but the true PSNR decreased. We be-
lieve that this is due to an overfitting of the linear expansion, especially
for a simple image such as “house” where the neighborhoods have a
relatively low dimensionality. In this case, the difference between the
true PSNR and SURE-PSNR increases, as well as the dynamic range of
the weights of the linear expansion (typically below 0.50). An example
of “peppers” using 12 NLMs is shown in Fig. 1(e) and (h), without and
with dimensionality reduction, respectively.

C. Monte-Carlo Optimization

From the optimal weights of the NLM linear expansions, we could
not identify a clear trend that would be indicative for the “right” NLM
parameters to use; i.e., there is a large variability for different images
and noise levels. Therefore, we consider another experiment where all
NLM parameters (B, B', S, \) are randomly generated according to
a uniform distribution within the range of neighborhood size, dimen-
sionality of the neighborhood after PCA, search region, and smoothing
parameter as defined in the beginning of Section III.

1) Selection of Best NLM: We now take one step back and se-
lect the best performing NLM, according to its SURE, for 120 re-
alizations. This reverts parameter optimization by random sampling
of the parameter space (B, B’, S, \). The results are indicated in the
rows “1 NLM + self” with label® in Table II. We observe that in al-
most all cases the performance from the exhaustive search (with fixed
B' = 6) is not reached. This suggests that random sampling of the
parameter space remains suboptimal, despite the high number (120) of
realizations.

2) Linear Expansion of Multiple NLMs: We have seen before, when
combining multiple NLMs with heuristic parameter sets with SURE-
based linear expansion, that the diversity of the various contributions is
more important than their individual quality. Therefore, we use now
random parameters for 3, 6, and 12 NLMs. These are indicated in
Table IT with the label . Each time, the best performance of 10 Monte-
Carlo realizations as indicated by the SURE-PSNR is reported. Inter-
estingly, this simple method outperforms both the best single NLM and
the NLM linear expansion with fixed parameters: combining only 3
NLMs often reached or improved the results over 12 NLMs with fixed
parameters. The results for “peppers” are shown in Fig. 1(f) and (i).
Despite the improved PSNR, visual observation of the images reveals
a grainy appearance which is probably due to contributions of NLMs
with small neighborhoods. As a comparison, the result obtained by the

140 |- S=21x21 /,/

®
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3
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Fig. 4. Computation time of a single NLM algorithm for a 256 X 256 image as
a function of the neighborhood dimensionality (B’) and search region.

state-of-the-art algorithm BM3D [19], which uses basis functions that
are better adapted to edges, is shown in (c). For natural images such as
“lena,” this difference is less obvious; e.g., see Figs. 2(b) and (c).

D. On the Dimensionality Reduction

We have observed that using PCA to reduce the dimensionality of
the neighborhood is beneficial for both quality and computational com-
plexity. The optimal number of dimensions is still dependent on the
image content and the noise level, which explains why the linear expan-
sion of NLMs with Monte-Carlo generated parameters is advantageous.
In Fig. 3, we plot the average PSNR as a function of the number of di-
mensions for a linear expansion of 12 NLMs with (B, S, A) Monte-
Carlo generated.

E. On the Computational Complexity

Finally, we also briefly mention the computational complexity of the
proposed method, which was implemented in Matlab (R2010b) using
C for the core calculations (Intel Core 2 Duo, 2.66 GHz; 4 GB RAM).
The dimensionality of the neighborhood (eventually after projection)
and the search region are the two main parameters that influence the
computation time. Therefore, in Fig. 4, we plot the computation time
of a single NLM for a 256 x 256 image as a function of B’ and S.
Compared to the main NLM algorithm, the computational load of the
divergence term for the SURE calculation and the optimal weights of
the linear expansion (when combining multiple NLMs) are negligible.
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Note that our best results taking the best realization of 10 Monte-Carlo
parameter sets for 12 NLMs require 120 NLM evaluations, which typ-
ically adds up to 15-20 minutes. However, this type of algorithm can
make use of a parallel implementation in an almost trivial way.

IV. CONCLUSION

We derived the SURE for the NLM algorithm with linear projection
of the neighborhoods. The key feature of this derivation is the explicit
analytical form of the divergence term of NLM, which is surprising for
anonlinear algorithm. The SURE can be easily computed on-the-fly as
part of the original NLM algorithm.

The parameter setting of NLM is dependent on image content and
noise level. Therefore, the SURE is a useful measure to estimate and
tune these parameters. Next to exhaustive optimisation, we considered
a linear expansion of multiple NLMs. We obtained the best perfor-
mance for a linear combination of 12 NLMs using Monte-Carlo gen-
erated parameter sets. These results are close to the state-of-the-art de-
noising schemes while relying on the relatively simple algorithm of
NLM and the SURE-based optimisation of linear weights.

Future work could further investigate the optimal structure of the
NLM parameter settings. Promising avenues also include the use of
different linear projections of the neighborhoods (e.g., to improve in-
variance to some features) and further development of a spatially adap-
tive version of NLM, including speeding up the algorithm [12]. Finally,
the reprojection method from [33] could be incorporated to improve vi-
sual quality once the optimal parameter set determined.

APPENDIX A
DERIVATION OF THE DIVERGENCE TERM

To obtain the divergence term, we introduce W1 = 3, . 5, wi 1 and
we derive & with respect to yi, which results into

o Wige (Wid1) — (Widh) G

9

oy Wi
1 Owyg 1 . Owy 1
= — E ——yk + w11 — 1 E — a7
W Kes, Oyl ~—~ Kes, 8!/1

Further on, deriving the weights gives (18), shown at the top of the
page. By using the previous relations, we derive the constituting term
of the divergence as (11). The divergence is finally given by combining
the previous relation with (7).
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Fast Bilateral Filter With Arbitrary Range and
Domain Kernels

Bahadir K. Gunturk, Senior Member, IEEE

Abstract—In this paper, we present a fast implementation of the bilat-
eral filter with arbitrary range and domain kernels. It is based on the his-
togram-based fast bilateral filter approximation that uses uniform box as
the domain kernel. Instead of using a single box kernel, multiple box ker-
nels are used and optimally combined to approximate an arbitrary domain
kernel. The method achieves better approximation of the bilateral filter
compared to the single box kernel version with little increase in compu-
tational complexity. We also derive the optimal kernel size when a single
box kernel is used.

Index Terms—Image enhancement, nonlinear filtering.

[. INTRODUCTION

The bilateral filter is a nonlinear weighted averaging filter, where the
weights depend on both the spatial distance and the intensity distance
with respect to the center pixel. The main feature of the bilateral filter
is its ability to preserve edges while doing spatial smoothing. The term
“bilateral filter” was first used by Tomasi and Manduchi in [1]; the
same filter was earlier called the SUSAN (Smallest Univalue Segment
Assimilating Nucleus) filter by Smith and Brady in [2]. The variants of
the bilateral filter have been published even earlier as the sigma filter
[3] and the neighborhood filter [4].
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At a pixel location x = (x1,x2), the output of the bilateral filter is
calculated as follows:

. 1

I(X)Zm Y Eallly = xIDE-(I(y) = I(x)DI(y) (D)

yEN(x)

where K 4(-) is the spatial domain kernel, K- (-) is the intensity range
kernel, A'(x) is the set of pixels within a spatial neighborhood of x,
and C'(x) is the normalization term

Cx)= Y Kallly —xI)EA(I(y) = I(x)]).

yEN (%)

(@)

The kernels K 4(-) and K, (-) determine how the spatial and intensity
differences are treated. The contribution (weight) of a pixel I(y) is
determined by the product of K 4(-) and K, (-). The bilateral filter in
[1] uses the Gaussian kernel, G, (z) = exp(—z*/2¢?), for both the
domain and range kernels:

Ka(lly = %) = Gou(ly — %) €

and

K (I(y) = I(x)]) = Go, (1(y) = I(x)])- )

On the other hand, the sigma filter [3] and the neighborhood filter [4]
use different kernels. The sigma filter [3] first calculates the local stan-
dard deviation around I(x); the standard deviation is then used to de-
termine a threshold value for pixel intensities, and pixels that are within
the threshold of the center pixel I(x) are averaged (with equal weights)
to calculate the filter output at that pixel. In case of the neighborhood
filter [4], the range kernel is a Gaussian as in (3), and the spatial kernel
is a uniform box kernel. Among different kernel options, the Gaussian
kernel is the most popular choice for both the range and spatial kernels,
as it gives an intuitive and simple control of the behavior of the filter
with two parameters, o4 and 0.

The bilateral filter has found a wide range of applications in image
processing and computer vision. The immediate application of the bi-
lateral filter is image denoising as it can do spatial averaging without
blurring edges. [5] presents a multiresolution extension of the bilateral
filter for image denoising and an empirical study on optimal parameter
selection. It is shown that the optimal value of 7 is relatively insensi-
tive to noise power, while the optimal o, value is linearly proportional
to the noise standard deviation. Other applications of bilateral filter in-
clude tone mapping in high-dynamic range imaging [6], contrast en-
hancement [7], [8], fusion of flash and no-flash images [9], [10], fusion
of visible spectrum and infrared spectrum images [11], compression
artifact reduction [12], 3-D mesh denoising [13], [14], depth map es-
timation [15], video stylization [16], video enhancement [17], texture
and illumination separation [18], orientation smoothing [19], and op-
tical flow estimation [20].

This paper presents a fast approximation of the bilateral filter with
arbitrary range and domain kernels. It is based on a method presented
by Porikli in [21]. The method in [21] (which uses a box domain
kernel) is extended by optimally combining multiple box kernels to
approximate an arbitrary domain kernel. As there is no restriction on
the range kernel either, any range and domain kernels can be used
with this fast bilateral filter implementation. Section II reviews the
fast bilateral filter techniques in the literature. The proposed method is
explained in Section III. In Section IV, the question of optimal kernel
size in case of a single box kernel is addressed. Section V provides
some experimental results, and Section VI concludes the paper.
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