Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Wavelet Deconvolution
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

A Fast Iterative Thresholding Algorithm for Wavelet-Regularized Deconvolution

C. Vonesch, M. Unser

Proceedings of the SPIE Optics and Photonics 2007 Conference on Mathematical Methods: Wavelet XII, San Diego CA, USA, August 26-29, 2007, vol. 6701, pp. 67010D-1/67010D-5.


We present an iterative deconvolution algorithm that minimizes a functional with a non-quadratic wavelet-domain regularization term. Our approach is to introduce subband-dependent parameters into the bound optimization framework of Daubechies et al.; it is sufficiently general to cover arbitrary choices of wavelet bases (non-orthonormal or redundant). The resulting procedure alternates between the following two steps:

  1. a wavelet-domain Landweber iteration with subband-dependent step-sizes;
  2. a denoising operation with subband-dependent thresholding functions.

The subband-dependent parameters allow for a substantial convergence acceleration compared to the existing optimization method. Numerical experiments demonstrate a potential speed increase of more than one order of magnitude. This makes our “fast thresholded Landweber algorithm” a viable alternative for the deconvolution of large data sets. In particular, we present one of the first applications of wavelet-regularized deconvolution to 3D fluorescence microscopy.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/vonesch0703.html,
AUTHOR="Vonesch, C. and Unser, M.",
TITLE="A Fast Iterative Thresholding Algorithm for Wavelet-Regularized
	Deconvolution",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical Imaging:
	{W}avelet {XII}",
YEAR="2007",
editor="",
volume="6701",
series="",
pages="67010D-1--67010D-5",
address="San Diego CA, USA",
month="August 26-29,",
organization="",
publisher="",
note="")

© 2007 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved