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ABSTRACT

Modern biology depends crucially on two research modalities:1 fluorescent markers and high-resolution mi-
croscopy. The need to track biological compounds down to molecular scales poses considerable challenges to
the instrumentation. In this context, deconvolution microscopy is becoming a key-element in the experimental
process.

Wavelet-based deconvolution methods are a recent and promising development.2 However, they have not been
considered as a serious alternative to existing deconvolution methods so far, mainly due to their computational
cost. Our contribution shows the feasibility of wavelet-regularized deconvolution at a cost comparable to a few
tens of iterations of a standard algorithm. This can be considered the present tolerance limit, given the size of
usual biomicroscopy data sets.

Wavelets have proven to be a very successful tool for the estimation of signals that are corrupted by noise.
Denoising methods based on a thresholding of the wavelet coefficients were first introduced and justified in a
statistical framework.3 They were later reinterpreted in a variational framework,4 which can be extended to
more general inverse problems such as deconvolution.

Let us denote by y a vector containing noisy and blurred measurements of some original signal xorig. To
estimate this signal, several research groups2,5, 6 have proposed to minimize the cost function

J(x) = ‖y −Hx‖22 + λ‖Wx‖1. (1)

Here, H is a matrix that models the linear distortions introduced by the measurement device. In the case
of deconvolution, H is the block-circulant matrix corresponding to the impulse response of the microscope.
The Euclidian norm ‖y − Hx‖2 measures the “mismatch” between the measured signal y and the prediction
corresponding to the estimate x. W is a transform matrix such that Wx contains the wavelet coefficients of x,
and ‖Wx‖1 represents the sum of the absolute values of these coefficients. This term, whose influence can be
controlled by the scalar λ, favors estimates with a sparse wavelet extension. This constraint makes sense because
many “natural signals” exhibit this property.

In the case of an orthonormal wavelet basis, it has been shown5 that (1) can be minimized by iterating the
mapping

M{x} = WTTλτ/2{W[x + τHT (y −Hx]}.

This is essentially a Landweber iteration (with step size τ) followed by a wavelet-domain soft-thresholding opera-
tion (with threshold λτ/2). Unfortunately, this algorithm displays slow convergence in experimental situations.2

We propose to use Shannon wavelets for regularization. This allows us to separate the expression of the
cost function (1) into subband-specific terms. By adapting the derivation of Daubechies et al.,5 we introduce
subband-dependent step sizes an threshold levels. Because our subband-dependent parameters are much larger
than in the standard algorithm, we achieve an acceleration of roughly one order of magnitude.

The potential of this acceleration is illustrated in the images below. They show maximum intensity projections
of a 3D stack of a fluorescence-labeled fibroblast cell, with fluorescent microbeads inserted in the sample medium.
The left-hand image is the result of 10 iterations of the existing deconvolution algorithm, while the right-hand
image was obtained using 10 iterations of our accelerated algorithm. The left-hand image cannot be distinguished
visually from the acquired widefield image, due to the slow convergence of the original algorithm. Our algorithm
rapidly produces an image where the cell membrane is better defined and the microbeads are significantly
brighter.

SSBE Annual Meeting 2007 Page 6 



ACKNOWLEDGMENTS

This work was funded in part by the Hassler Foundation. The images were produced in collaboration with
Thierry Laroche, BI-Op, EPFL, Lausanne.

REFERENCES
1. C. Vonesch, F. Aguet, J.-L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal

Processing Magazine 23, pp. 20–31, May 2006.
2. M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-based image restoration,” IEEE

Transactions on Image Processing 12, pp. 906–916, August 2003.
3. D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika 81, pp. 425–

455, August 1994.
4. A. Chambolle, R. A. DeVore, N.-Y. Lee, and B. J. Lucier, “Nonlinear wavelet image processing: varia-

tional problems, compression, and noise removal through wavelet shrinkage,” IEEE Transactions on Image
Processing 7, pp. 319–335, March 1998.

5. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse prob-
lems with a sparsity constraint,” Communications on Pure and Applied Mathematics 57, pp. 1413–1457,
August 2004.
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