Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Comparison of Algorithms
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Comparison of Algorithms for the Fast Computation of the Continuous Wavelet Transform

M.J. Vrhel, C. Lee, M. Unser

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing IV, Denver CO, USA, August 6-9, 1996, vol. 2825, part I, pp. 422-431.


We introduce a general framework for computing the continuous wavelet transform (CWT). Included in this framework is an FFT implementation as well as fast algorithms which achieve O(1) complexity per wavelet coefficient. The general approach that we present allows a straightforward comparison among a large variety of implementations. In our framework, computation of the CWT is viewed as convolving the input signal with wavelet templates that are the oblique projection of the ideal wavelets into one subspace orthogonal to a second subspace. We present this idea and discuss and compare particular implementations.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/vrhel9602.html,
AUTHOR="Vrhel, M.J. and Lee, C. and Unser, M.",
TITLE="Comparison of Algorithms for the Fast Computation of the
	Continuous Wavelet Transform",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
	Imaging: {W}avelet Applications in Signal and Image Processing
	{IV}",
YEAR="1996",
editor="",
volume="2825",
series="",
pages="422--431",
address="Denver CO, USA",
month="August 6-9,",
organization="",
publisher="",
note="Part {I}")

© 1996 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved