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Abstract. Motivated by the interior tomography problem, we propose a method for exact reconstruction of a
region of interest of a function from its local Radon transform in any number of dimensions. Our
aim is to verify the feasibility of a one-dimensional reconstruction procedure that can provide the
foundation for an efficient algorithm. For a broad class of functions, including piecewise polynomials
and generalized splines, we prove that an exact reconstruction is possible by minimizing a generalized
total variation seminorm along lines. The main difference with previous works is that our approach
is inherently one-dimensional and that it imposes less constraints on the class of admissible signals.
Within this formulation, we derive unique reconstruction results using properties of the Hilbert
transform, and we present numerical examples of the reconstruction.
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1. Introduction. We consider the general problem of recovering a function on a region of
interest Ωµ ⊂ Rd using information from the local Radon transform. In the two-dimensional
setting, this corresponds to the interior tomography problem, where one assumes that line
integrals passing through the region of interest are known, while the others are unknown [17].
Our reconstruction method is based on the identities

I = (−1)(d−1)/2(2π)1−dBϕ0

∂d−1

∂sd−1
RI,

I = (−1)d/2+1(2π)1−dHϕ0Bϕ0

∂d−1

∂sd−1
RI

for odd- and even-dimensional spaces, respectively. They provide a method for inverting
the Radon transform RI of an image I, using a modified backprojection operator Bϕ0 and
the directional Hilbert transform Hϕ0 ; cf. [15, 23]. In the even-dimensional case, this is
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different from the standard filtered backprojection, since the Hilbert transform follows the
backprojection step. An advantage of our approach is that we can segment the domain into
lines and reconstruct on these restricted domains. Consequently, we reduce the reconstruction
to a one-dimensional problem, which simplifies the formulation.

We consider images modeled as piecewise smooth functions. In particular, the function
should be defined on a partitioned domain such that it is smooth on each subregion. Previous
works addressed this problem under the assumption that the function was a piecewise poly-
nomial [18, 20], and the authors concentrated on the piecewise linear images [18, Theorem 4],
due to the complexity of their two-dimensional regularization term.

By combining a simplified one-dimensional formulation with the ideas developed in [18, 20],
we show how to perfectly reconstruct new classes of functions in the ideal, noise-free setting.
For example, any function that has the form of a nonuniform exponential spline along lines in
the plane fits our framework, and the nonpolynomial versions were not previously considered.
More generally, the function to be reconstructed should be a generalized L-spline along a set
of lines that pass through the region of interest.

We also provide results for the case where the linear restrictions are combinations of
polynomial splines of various orders. This is a direct extension of [18, 20], since every piecewise
polynomial function satisfies our condition.

This paper is organized as follows. In the remainder of section 1, we introduce our notation
and provide details on our reconstruction method. Section 2 contains the fundamental results
of the paper. We fully explain the odd-dimensional case and focus on the more complicated
even-dimensional case. For d even, we show how to perfectly reconstruct functions that are
generalized L-splines along lines. In section 3, we formulate the multispline reconstruction
method, and in section 4 we present numerical experiments.

1.1. Notation. The variable θ denotes a vector on the unit sphere Sd−1 ⊂ Rd. The
collection of vectors that are orthogonal to θ is denoted as

θ⊥ =
{
y ∈ Rd : y · θ = 0

}
.

The variables ϕ and φ are used similarly.
Since our motivation is tomography, we refer to real-valued functions in the spatial domain

as images and denote them as I(x) for x ∈ Rd. While I is defined on the whole space, we
assume that it is supported on the unit ball; i.e., I is supported within

Ω1 :=
{
x = ρθ ∈ Rd : |ρ| ≤ 1,θ ∈ Sd−1

}
.

The interior of I is its restriction to the ball Ωµ = {ρθ ∈ Rd : |ρ| < µ} for some µ < 1, which
we assume to be fixed throughout the paper.

We denote the Radon transform of an image I as

RI(θ, s) =

∫

θ⊥
I (sθ + y) dy,

where s ∈ R and θ ∈ Sd−1, and we use the term sinogram for any function in the Radon
domain, regardless of the number of dimensions d. The local Radon transform of I is the
restriction of RI to the region {(θ, s) : |s| < µ}.D
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In this paper, we consider a regularization term that is defined by a Fourier multiplier
operator L. For example, we can choose L to be a constant coefficient differential operator

aKDK + aK−1D
K−1 + · · · + a1D+ a0,

where K ≥ 1 and each ak is a complex number; here, D denotes the distributional derivative
on R. Importantly, for any open interval E ⊂ R, such operators map C∞

c (E) to Cc(E), and
their null spaces are composed of entire functions. In the example above, the null space is
finite-dimensional, and it comprises products of polynomials and complex exponentials.

On an open interval E ⊂ R, an operator L defines a seminorm

∥f∥TV (L;E) := ∥Lf∥L1(E)

for sufficiently smooth functions f . We extend this definition using the dual formulation

(1.1) ∥f∥TV (L;E) := sup

{∫

E
f(x)L∗h(x)dx : h ∈ C∞

c (E), ∥h∥L∞
≤ 1

}

to allow for a broader class of functions.
The Fourier transform of a function f ∈ L1(Rd) is

f̂(ω) = F{f}(ω) =
∫

Rd
f(x)e−2πix·ωdx,

and if f̂ ∈ L1(Rd), its inverse Fourier transform is

F−1{f}(x) =
∫

Rd
f̂(ω)e2πix·ωdω.

The Hilbert transform [9, 15] of a one-dimensional function f : R→ R is

Hf(x) =
1

π
PV

∫

R

f(x− y)

y
dy

=
1

π
lim
ϵ→0

∫

|y|>ϵ

f(x− y)

y
dy,

F{Hf}(ω) = −i sgn(ω)f̂(ω),

whenever the right-hand side is well defined. For a given vector ϕ0 ∈ Sd−1 ⊂ Rd, the direc-
tional Hilbert transform [10, 15] of a d-dimensional function f : Rd → R is

Hϕ0f(x) =
1

π
PV

∫

R

f (x− sϕ0)

s
ds,

F{Hϕ0f}(ω) = −i sgn (ω ·ϕ0) f̂(ω)

whenever the right-hand side is well defined.D
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1.2. Reconstruction method. For the reconstruction of an image I from its Radon trans-
form RI, we use the differentiated backprojection [7, 15, 17, 19, 23]. The reconstruction
formulas are given in the introduction, where the backprojection operator

(1.2) Bϕ0J(x) =

∫

Sd−1
⋂
{φ·ϕ0≥0}

J(φ,x · φ)dφ

depends on the vector ϕ0.
In the following, we analyze the continuity properties of the involved operators and provide

sufficient conditions for a function to be recovered using this method. To make this precise,
we require additional notation. For the domain Sd−1 × R and α ≥ 0, we define the Sobolev
space Hα(Sd−1 × R) by the equation

∥J∥2Hα(Sd−1×R) =

∫

Sd−1

∫ ∞

−∞

(
1 + σ2

)α |F {J(ϕ, ·)} (σ)|2 dσdϕ.

Similarly, the Sobolev spaces Hα(Rd) are defined by

∥I∥2Hα(Rd) =

∫

Rd

(
1 + |ω|2

)α ∣∣∣Î(ω)
∣∣∣
2
dω.

The Schwartz space of infinitely differentiable, rapidly decaying functions on Rd is denoted
as S(Rd).

Theorem 1.1 (see [13, p. 42]). For each α ≥ 0, there exist constants c(α, d), C(α, d) such
that for any I ∈ S(Rd) that is supported on the closed unit ball,

c(α, d) ∥I∥Hα(Rd) ≤ ∥RI∥Hα+(d−1)/2(Sd−1×R) ≤ C(α, d) ∥I∥Hα(Rd) .

The Schwartz space on Sd−1 ×R is denoted as S(Sd−1 ×R) (cf. [13, p. 10]), which can be
defined as restrictions of functions from S(Rd+1).

Definition 1.2. Let X be the seminormed space of tempered distributions
{
g(ϕ, s) =

∂d−1

∂sd−1
RI(ϕ, s) : I ∈ L∞(Rd), supp(I) ⊆ Ω1

}

with
|g|X := ∥RI∥H(d−1)/2(Sd−1×R) .

Lemma 1.3. For J ∈ S(Sd−1 × R), the operator Bϕ0 is defined in the Fourier domain by

F{Bϕ0J}(ω) = |ω|1−d Ĵ

(
sgn(ω ·ϕ0)

ω

|ω|
, sgn(ω ·ϕ0) |ω|

)
.

Proof. This formula can be verified using the techniques described in [13, pp. 13–15].
Details are provided in Appendix A.

In the previous lemma, we see how the backprojection operator depends on the domain
of integration in (1.2). If we had instead used the standard backprojection

(1.3) B̃J(x) =

∫

Sd−1
J(φ,x · φ)dφ
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that integrates over the sphere Sd−1, then the Fourier transform would be

F
{
B̃J

}
(ω) = |ω|1−d

(
Ĵ

(
ω

|ω| , |ω|
)
+ Ĵ

(
− ω

|ω| ,− |ω|
))

.

Lemma 1.4. For I ∈ S(Rd), the following reconstruction formulas are valid:

I = (−1)(d−1)/2(2π)1−dBϕ0

∂d−1

∂sd−1
RI,(1.4)

I = (−1)d/2+1(2π)1−dHϕ0Bϕ0

∂d−1

∂sd−1
RI.(1.5)

Proof. The Fourier slice theorem implies that RI ∈ S(Sd−1 × R), and it follows that

g(θ, s) := ∂d−1

∂sd−1RI(θ, s) is also in this Schwartz space. Then Lemma 1.3 implies that

F{Bϕ0g}(ω) = |ω|1−d ĝ

(
sgn(ω ·ϕ0)

ω

|ω| , sgn(ω · ϕ0) |ω|
)

= |ω|1−d
(
(2πi sgn(ω · ϕ0) |ω|)d−1 F{RI}

(
sgn(ω ·ϕ0)

ω

|ω| , sgn(ω · ϕ0) |ω|
))

= (2πi)d−1(sgn(ω ·ϕ0))
d−1Î(ω).

If d is odd, i.e., d = 2ko + 1 for some integer ko ≥ 1, then

F{Bϕ0g}(ω) = (−1)ko(2π)2ko Î(ω)

and

Bϕ0

∂d−1

∂sd−1
RI = Bϕ0g

= (−1)ko(2π)2koI.

Now, if d is even, i.e., d = 2ke for some integer ke ≥ 1, then

F{Bϕ0g}(ω) = (−1)ke(2π)2ke−1(−i)sgn(ω ·ϕ0)Î(ω)

and

Bϕ0

∂d−1

∂sd−1
RI = Bϕ0g

= (−1)ke(2π)2ke−1Hϕ0I.

In general, the restriction I ∈ S is too strong. Below, we provide a continuity result for
the proposed backprojection operator that we combine with the Sobolev estimates of Theorem
1.1 to obtain weaker conditions for reconstruction.

Lemma 1.5. The operator Bϕ0 : X → L2(Rd) is continuous.

Proof. Let g(θ, s) = ∂d−1

∂sd−1RI(θ, s) be an element of X
⋂
S(Sd−1 × R).D
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If d is odd, then there are constants C, C̃ > 0 such that

∥Bϕ0g∥L2(Rd) = C ∥I∥L2(Rd)

≤ C̃ ∥RI∥H(d−1)/2(Sd−1×R) .

The inequality follows from Theorem 1.1.
In the case where d is even, we use the fact that the directional Hilbert transform is unitary.

Then we apply a technique similar to the odd-dimensional case to obtain the result.
In the proof of the previous result, we have made use of the density of Schwartz class

functions in X. The operator Bϕ0 is defined on X using this property. More generally, Bϕ0

can be defined on all tempered distributions using the fact that it is the adjoint of the Radon
operator; cf. Proposition A.1.

Theorem 1.6. The reconstruction formulas of Lemma 1.4 are valid for images I ∈ L∞(Rd)
with support in Ω1. Furthermore, the seminorm on the space X of Definition 1.2 is in fact a
norm, so X is a normed space.

Proof. The assumptions imply that each such I is a compactly supported element of
L2(Rd). Therefore, the first part of the theorem is valid due to Theorem 1.1 and Lemma 1.5.

The fact that X is a normed space is an immediate consequence of the validity of the
reconstruction formulas on X.

2. Single spline perfect reconstruction from local data. Our purpose is to use regular-
ization to exactly reconstruct the interior of an image I from its local Radon transform. In
spaces of odd dimension, reconstruction is straightforward. The derivative is a local operator,
and for |x| < µ, Bϕ0J(x) only depends on the value of J(φ, s) for |s| ≤ |x| < µ. Therefore,
we have an explicit formula (1.4) for the reconstruction of the region of interest; cf. [13, pp.
20–21].

Proposition 2.1. If d is odd and I ∈ L∞(Rd) is supported on Ω1, then I can be recovered
from RI using local operations.

Proof. The fact that Bϕ0 is a local operator on elements of X can be deduced using the
fact that it is the adjoint of the Radon operator; cf. Proposition A.1.

In spaces of even dimension, the Hilbert transform introduces difficulties, and it is this
setting that we consider for the remainder of the paper. In what follows, we assume that d is
even.

Since the directional Hilbert transform is equivalent to one-dimensional Hilbert transforms
along lines, we formulate our reconstruction to take advantage of this and to progressively
reconstruct images along lines.

We use l0 = (ρ0,θ0,ϕ0) to represent the line ρ0θ0 + τϕ0, where θ0 · ϕ0 = 0. We also use
the notation

l0
⋂

Ωµ = {τ ∈ R : |ρ0θ0 + τϕ0| < µ} .

Definition 2.2. Let IL be the collection of real-valued images I ∈ L2(Rd) satisfying the
following conditions:
(i) there is a set of lines L such that the ball of radius µ centered at the origin is contained

in the union of the elements of L;
(ii) I ∈ L∞(Rd) is supported on Ω1;D
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x1

x2

µ

⊙

⊙
⊙

⊙
l0

Figure 1. Structure diagram: This diagram illustrates the reconstruction. We assume the line l0 is
contained in L, so that the restriction of I to l0 is an L-spline. The knots of the nonuniform spline are depicted
by the symbol

⊙
. The shaded regions denote structural elements within I, and we expect spline knots to appear

at the boundaries.

(iii) for every l0 = (ρ0,θ0,ϕ0) ∈ L, there are Nl0 ∈ Z≥0 real coefficients
{
al0n

}Nθ0
n=1

and points
{
τ l0n

}Nl0
n=1

such that

(2.1) LI(ρ0θ0 + τϕ0) =

Nl0∑

n=1

al0n δ(τ − τ l0n )

within Ωµ.
Essentially, this definition says that every element I of IL should satisfy the following

property: for every l0 ∈ L, I(ρ0θ0+τϕ0) is a generalized L-spline. To be precise, a generalized
L-spline is a function that is composed of smooth pieces that are in the null space of L, and
these pieces are joined at points τ l0n of finite smoothness called spline knots; cf. Figure 1.

The nature of the reconstruction reduces the problem of exact recovery to a one-dimensional
problem. Therefore, our analysis focuses on showing that we have perfect reconstruction on
lines from L. Note, however, that this implies perfect reconstruction over the entire domain
Ωµ.

For exact recovery of an image I on a line l0, we minimize a generalized total variation
(TV) seminorm. Since RI(ϕ, s) is known for s < µ, any ambiguity g ∈ L∞(R) will have a
Hilbert transform Hg that is zero on l0

⋂
Ωµ.

Definition 2.3. For I ∈ IL and l0 ∈ L, the set G consists of every compactly supported,
real-valued function g ∈ L∞(R) that satisfies the following: Hg(τ) = 0 for τ ∈ l0

⋂
Ωµ. Also,D

ow
nl

oa
de

d 
02

/1
9/

15
 to

 1
28

.1
78

.4
8.

12
7.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERIOR TOMOGRAPHY USING 1D GENERALIZED TV 233

define the set
GI,l0 := {F (τ) = I(ρ0θ0 + τϕ0) + g(τ) : g ∈ G} .

Essentially, GI,l0 is the set of functions that are compatible with the Hilbert data of I on
the line l0.

Our main result on perfect reconstruction is stated below. The key point is that the
elements of G are infinitely smooth on l0

⋂
Ωµ. This is in contrast with the image I that

is to be reconstructed; along lines, I is a generalized L-spline, where L is a finite order
operator. This gap in smoothness allows us to distinguish between the these two terms using
regularization.

Theorem 2.4. Let I ∈ IL, and fix l0 so that

LI(ρ0θ0 + τϕ0) =

Nl0∑

n=1

al0n δ(τ − τ l0n )

on Ωµ. Then

(2.2) argmin
F∈GI,l0

∥F∥TV (L;l0
⋂

Ωµ)

is the one element set {I(ρ0θ0 + τϕ0)}.
Proof. Lemma 2.6 implies that any element F0 of (2.2) is a function of the form I(ρ0θ0 +

τϕ0) + g(τ), where g is equal to a function in the null space NL on l0
⋂

Ωµ. In addition, we
know that the Radon transform of g is equal to 0 for |s| < µ, so Lemma 2.7 implies that g is
identically 0.

This theorem can be viewed as an example of the general principle that splines minimize
TV-type functionals over restricted classes of functions. In contrast to the classical setting
[5], where interpolation conditions are imposed, we restrict the functions using local Hilbert
data as in [18].

2.1. Technical lemmas. Here, we present the lemmas used in the proof of Theorem 2.4.
Lemma 2.5 addresses the smoothness of the perturbations g ∈ G. Lemma 2.6 restricts the
class of possible minimizers of the generalized TV seminorm, and Lemma 2.7 demonstrates
the uniqueness of the minimizer.

Lemma 2.5. If g ∈ G, then g has continuous derivatives of all orders on l0
⋂
Ωµ.

Proof. A formula for g is

g (τ) = −Hϕ0Hϕ0g (τ)

= − 1

π
PV

∫

R

Hϕ0g (τ − s)

s
ds.

Changing variables, we have

g (τ) = − 1

π
PV

∫

R

Hϕ0g (t)

τ − t
dt

= − 1

π
PV

∫

R\(l0
⋂

Ωµ)

Hϕ0g (t)

τ − t
dt.
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Then the restriction τ ∈ l0
⋂

Ωµ means that the singularity is located outside of the domain
of integration. Therefore g has derivatives of all orders.

Lemma 2.6. Let I ∈ IL, and fix l0 so that for τ ∈ l0
⋂

Ωµ

LI(ρ0θ0 + τϕ0) =

Nl0∑

n=1

al0n δ(τ − τ l0n ).

Then
argmin
F∈GI,l0

∥F∥TV (L;l0
⋂

Ωµ)

is contained in

(2.3)
{
I (ρ0θ0 + τϕ0) + g(τ) : g (τ)|l0 ⋂Ωµ

= P |l0 ⋂Ωµ
, P ∈ NL

}
.

Proof. Suppose that

F (τ) = I (ρ0θ0 + τϕ0) + g(τ) ∈ GI,l0

is not in (2.3). Then Lemma 2.5 implies that there is an interval [e1, e2] ⊂ l0
⋂

Ωµ, not
containing any point τ l0n , where Lg(τ) > 0 (or Lg(τ) < 0). Then

∥F∥TV (L;l0
⋂

Ωµ) = sup
∥h∥L∞≤1

∫

l0
⋂

Ωµ

F (t)L∗h(t)dt

= sup
∥h∥L∞≤1

∫

l0
⋂

Ωµ

(I (ρ0θ0 + tϕ0) + g(t)) L∗h(t)dt

= sup
∥h∥L∞≤1

Nl0∑

n=1

al0n h
(
τ l0n

)
+

∫

l0
⋂

Ωµ

Lg(t)h(t)dt.

Note that in the formulation above, the functions h are assumed to be smooth test functions
as in (1.1). Now define a sequence of smooth functions {hm}∞m=1 converging to a function h0
satisfying
(i) h0

(
τ θ0n

)
= sgn

(
al0n

)
;

(ii) h0(t) = 1 for t ∈ [e1, e2];
(iii) h0(t) = 0 for every other value of t.
Considering this sequence, we know that

∥F∥TV (L;l0
⋂

Ωµ) ≥
Nl0∑

n=1

∣∣∣al0n
∣∣∣+

∫ e2

e1

|Lg(t)| dt

>

Nl0∑

n=1

∣∣∣al0n
∣∣∣

= ∥I(ρ0θ0 + τϕ0)∥TV (L;l0
⋂

Ωµ) .
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In the following lemma, we use properties of the Hilbert transform to demonstrate the
uniqueness of the minimizer of the TV seminorm. This result is a generalization of Lemma 2
from [18], in which the authors proved the result for polynomial functions. Here, we see that
essentially the same statement holds for entire functions in general.

Lemma 2.7. Let v ∈ L2(R), and denote its Hilbert transform as w := Hv. Let P : C → C
be an entire function taking real values on the real line, and suppose that w(x) = P (x) on the
real line segment −e0 ≤ x ≤ e0 for some e0 > 0. If v(x) = 0 for −e0 ≤ x ≤ e0, then v and w
are both identically 0.

Proof. The proof relies on the characterization of Hilbert transform pairs as boundary
values of analytic functions on the upper half of the complex plane [8, section 4.1.2], [9,
section 3.2] and on the Schwarz reflection principle [2, p. 125].

We define the domains

D1 := {z = x+ iy ∈ C : y > 0}
⋃

{z = x+ iy ∈ C : −e0 < x < e0, y = 0},

D2 = C\{z = x+ iy ∈ C : |x| ≥ e0, y = 0},

and we define the function F : D1 → C by

F (z) :=
1

π

∫

R

v(s)

z − s
ds

=
1

π

∫

R
v(s)

x− s

(x− s)2 + y2
ds− i

1

π

∫

R
v(s)

y

(x− s)2 + y2
ds,

where z = x + iy. The function F is analytic on the upper half plane, and we can directly
verify that it is continuous on D1, since v is equal to zero in a neighborhood of the origin.

On the segment (−e0, e0), F (x) = w(x), which means that F is real-valued on this interval.
Therefore, the Schwarz reflection principle implies that F can be continued analytically to all
of D2.

Since F is equal to an entire function P on an interval, F = P on the domain D2 [11,
p. 90].

Now, notice that the kernel of the integral in the imaginary part of F is the Poisson kernel.
This implies that the imaginary part of F converges to −v as y → 0+ [16, section 3.2]. The
kernel in the real part of F is the conjugate Poisson kernel, so the real part of F converges to
w as y → 0+ [8, section 4.1.2]. Therefore,

w(x) − iv(x) = lim
y→0+

F (x+ iy)

= lim
y→0+

P (x+ iy)

= P (x).

Since P is real-valued on the real line, w is equal to P and v is identically 0. Since the Hilbert
transform is unitary, w is also identically 0.D
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3. Multispline models. In this section, we aim to extend our model and allow for images
whose one-dimensional projections are linear combinations of splines of different orders.

Definition 3.1. Let IK be the collection of images I ∈ L2(Rd) satisfying the following:
(i) there is a set of lines L such that the ball of radius µ centered at the origin is contained

in the union of the elements of L;
(ii) I ∈ L∞(Rd) is supported on Ω1;
(iii) for every l0 ∈ L, there are polynomial splines {I l0k }Kk=1, where I l0k is of order k and

I (ρ0θ0 + τϕ0) =
K∑

k=1

I l0k (τ).

Notice that IK contains all images that are piecewise polynomials. Specifically, if there
is a partition of the interior domain Ωµ into a finite collection of subdomains, on which I is a
polynomial, then I ∈ IK for some value of K.

The idea for perfect reconstruction is similar to the single spline case. We seek to extract
a finitely smooth spline from a signal that is perturbed by an infinitely smooth term. The
added difficulty is the fact that we combine splines of different orders. As a result, we perform
the recovery process in stages. We begin by reconstructing an arbitrary perturbation of the
signal of interest. Then we extract the splines successively from the perturbed signal, starting
with the lowest order first. After identifying the splines, there remains a polynomial ambiguity
that is removed using the local Radon transform data.

Definition 3.2. Let E = (e1, e2) be an open interval in R. The set GK(E) consists of every
compactly supported, real-valued function g ∈ L∞(R) that satisfies the following: Hg(τ) = 0
for τ ∈ E and dkg/dxk ∈ L∞(E)

⋂
L1(E) for k ≤ K + 2.

3.1. Perfect reconstruction from local data. The first step in reconstructing I ∈ IK

is to extend the local Radon data RI to a function of the form R(I + G) for some G ∈
L∞(Rd) satisfying the following: G is compactly supported, RG(ϕ, s) = 0 for s < µ, and
G(ρ0θ0+ τϕ0) ∈ GK(l0

⋂
Ωµ). Then we apply the reconstruction formula of (1.5). On a fixed

l0 ∈ L, the resulting function is I(ρ0θ0 + τϕ0) + g(τ), where g is the ambiguity term.
Note that I(ρ0θ0 + τϕ0) + g(τ) satisfies the conditions of Lemma 3.3 with K0 = 1. We

apply the regularization described in the lemma, and we identify the first order spline I l01 (τ)
up to an order 1 (degree 0) polynomial ambiguity q1(τ); i.e., the regularization produces
I l01 (τ) + q1(τ). Then

I(ρ0θ0 + τϕ0) + g(τ)−
(
I l01 + q1

)
(τ)

satisfies the conditions of Lemma 3.3 with K0 = 2. We repeat the regularization until all
spline terms of I(ρ0θ0 + τϕ0) have been identified, up to a polynomial ambiguity; i.e., we
repeat the regularization until we have identified

q(τ) + I (ρ0θ0 + τϕ0) = q(τ) +
K∑

k=1

I l0k (τ),

where q is a polynomial of order K.D
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In the spatial domain, we have now identified two functions:

1. the initial reconstruction I(ρ0θ0 + τϕ0) + g(τ) (defined on R);
2. the sum of splines and polynomials q(τ) +

∑K
k=1 I

l0
k (τ) (defined on l0

⋂
Ωµ), obtained

by regularization.

The difference between these two functions is g − q. We then apply the regularization of
Lemma 3.4 to this function, and we obtain g. Subtracting g from I(ρ0θ0 + τϕ0) + g(τ), we
finish the process.

3.2. Technical lemmas. The basis of our multispline reconstruction process is the follow-
ing lemma. It shows how to separate splines using regularization.

Lemma 3.3. Let E = (e1, e2) be an open interval in R. Suppose f is a sum of order k
splines fk and a smooth function g ∈ GK(E); i.e., f = g +

∑K1
k=K0

fk. Then

argmin
∥F1∥TV (DK0+1,E)<∞

∥f − F1∥TV (DK0 ,E)

is equal to the set of functions

{fK0 + q : q ∈ NDK0} .

Proof. This can be interpreted as an approximation result. We write f = (f − F1) + F1,
and we must identify the best approximation to DK0f from all functions DK0F1 satisfying
∥F1∥TV (DK0+1,E) < ∞. This condition implies that DK0F1 is of bounded variation. Now, by

definition,

(3.1) DK0f = DK0fK0 +DK0

⎛

⎝g +
K1∑

k=K0+1

fk

⎞

⎠ .

The first term DK0fK0 is a sum of Dirac deltas, while the second term is piecewise continuous.
In this form, we see that the best approximation to DK0f from the class of bounded variation
functions is the second term on the right-hand side of (3.1). Therefore DK0(f−F1) = DK0fK0 ,
and the only ambiguity comes from the null space of DK0 .

Lemma 3.4. Let E = (e1, e2) be an open interval in R, and suppose q is a polynomial of
order K ∈ Z≥1. If g ∈ GK(E), then

{g} = argmin
g̃∈GK(E)

∥g − q − g̃∥TV (DK ;E) .

Proof. We first note that the solution set is contained in

{
g̃ ∈ GK(E) : g̃|E = g|E + p, p ∈ NDK

}
,

where every element has a Hilbert transform Hg̃(t) that is zero for t ∈ E. We apply Lemma
2.7 by defining v := Hg̃, and this implies that the null space term must be zero.D
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4. Interior tomography application. Based on the differentiated backprojection (DBP)
reconstruction in two- or three-dimensional space, the original reconstruction problem can
be converted to a set of one-dimensional Hilbert transform problems [3, 4, 21]. If the DBP
data g is available for the support of the object I, the reconstruction can simply be done by
performing a one-dimensional truncated inverse Hilbert transform.1 However, in the case of
the interior tomography problem, the detector is truncated, so the DBP data is only available
within a field of view (FOV). In this section, we assume that the FOV covers the region of
interest (ROI). In fact, we assume that they are equivalent. For the exact reconstruction at a
given point on a line l0, it is sufficient to know the DBP data g on the intersection between l0
and the support of I. However, this condition is not satisfied in interior tomography problems.

The main problem with inverting a truncated Hilbert transform is the existence of a
null space. More specifically, suppose we want to reconstruct a function f on an interval
E = (e1, e2), and we only know Hf on E. There exist nonzero functions g such that

Hf̃(x) = 0, x ∈ E.

In fact, we can take any g ∈ L2(R) that is supported outside of E, and the following formula
will produce such an f̃ :

− 1

π

∫

R\E

g(t)

t− τ
dτ.

One approach to solving this problem is to use a regularized reconstruction, where the
regularization term takes advantage of a priori knowledge of the function f to specify the
proper null space term.

4.1. Interior tomography with known subregions. In [3], the authors assume that the
image I to be reconstructed is known on small subregions within the FOV; cf. Figure 2. In
this figure, the FOV is located completely inside of the object. Therefore, on l0, the DBP is
not known over the support of I, so I cannot be recovered using the inverse Hilbert transform.
However, if there are known subregions in (−µ, µ) such as (e1, e2) and (e3, e4), the authors
show that I can be determined uniquely on this line.

The authors of [3] also note that the solution to the problem can be found using a sequence
of projection operators. The optimized solution was found by projection onto convex sets
(POCS). Let us denote I|l0 as f̄ . Also, let us assume g := Hf̄ is known on (−µ, µ). Then the
five convex constraints are

C1 := {f ∈ L2(R) : f(t) = 0, |t| > 1} ,
C2 := {f ∈ L2(R) : Hf(t) = g(t), |t| < µ} ,

C3 :=
{
f ∈ L2(R) : f(t) = f̄(t), t ∈ (e1, e2)

⋃
(e3, e4)

}
,

C4 :=

{
f ∈ L2(R) :

1

π

∫ 1

−1
f(t)dt = Cf̄

}
,

C5 := {f ∈ L2(R) : f(t) ≥ 0, |t| < 1} .

1Note that g and I are related by the directional Hilbert transform; cf. (1.5).D
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I(x)

ROI

−1 −µ µ 1

l0
e1 e2 e3 e4

Known Regions

Figure 2. Structure diagram: Interior problem with known subregions.

If PCj is the orthogonal projector onto the convex set Cj for j = 1, . . . , 5, then the iteration
of the POCS algorithm is described as

(4.1) fm = PC5PC4PC3PC2PC1fm−1,

with some initialization f0. If the intersection of the constraint sets is not empty, this algorithm
converges to one element of the intersection. The simulation results show that this method
works well; however, in practice, it is difficult to know the intensity inside of the object.

4.2. Exact recovery under generalized TV penalty. For interior tomography without
known subregions, we propose to use the generalized TV penalty in place of the projection
onto the convex set C3. Specifically, we consider the new set

C̃3 :=
{
f ∈ L2(R) : ∥f∥TV (L:Eµ) < γ

}
,

where Eµ := l0
⋂

Ωµ. This algorithm corresponds to the single operator reconstruction of
Theorem 2.4.

We recall that in our model, we assume f̄ ∈ L∞. For the reconstruction algorithm, we
further assume that we know upper and lower bounds Bu, Bl ≥ 0 for f̄ , and we define

Cf̄ := {f ∈ L2(R) : Bl ≤ f(t) ≤ Bu} .

We propose to use the POCS algorithm (4.1) with PC3 replaced by PC̃3
PCf̄

.2

2Note that PCf̄
makes the last projection PC5 unnecessary, so we eliminate this step from our algorithm.D
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The projection to each constraint is quite straightforward except for the projection on
C̃3, which is implemented as a denoising step. For a given f0 ∈ Cf̄ , the projection on C̃3 is
determined as

PC̃3
f0 = argmin

f∈Cf̄

{
∥f − f0∥2L2(Eµ) + 2λ ∥f∥TV (L;Eµ)

}

for an appropriate Lagrange multiplier λ. Using the definition of the generalized TV seminorm,
the problem is written as

min
f∈Cf̄

sup
h∈C∞

c (Eµ),∥h∥L∞≤1

{
∥f − f0∥2L2(Eµ) + 2λ

∫

Eµ

f(t)L∗h(t)dt

}
.

In most cases, we can weaken the restrictions on the functions h. If L is an operator of order
at most K, i.e., L : CK(R) → C(R), then we define and use the following larger class of test
functions:

C6 :=
{
h ∈ HK+1(R) : ∥h∥L∞

≤ 1
}
.

Therefore, the new formulation is

min
f∈Cf̄

sup
h∈C6

{

∥f − f0∥2L2(Eµ) + 2λ

∫

Eµ

f(t)L∗h(t)dt

}

.

Using a minimax theorem [6], we change the order of operations to obtain

sup
h∈C6

min
f∈Cf̄

{
∥f − f0∥2L2(Eµ) + 2λ

∫

Eµ

f(t)L∗h(t)dt

}
.

The inner minimization problem is solved by orthogonal projection; i.e., the minimizer is

(4.2) PCf̄
(f0 − λL∗h).

Next, using the equality

∥f − (f0 − λL∗h)∥2L2(Eµ) = ∥f∥
2
L2(Eµ) − 2

∫

Eµ

f(t) (f0(t)− λL∗h(t)) dt+ ∥f0 − λL∗h∥2L2(Eµ) ,

we reformulate the objective function as

∥f − f0∥2L2(Eµ)+2λ

∫

Eµ

f(t)L∗h(t)dt = ∥f − (f0 − λL∗h)∥2L2(Eµ)−∥f0 − λL∗h∥2L2(Eµ)+∥f0∥
2
L2(Eµ) .

Substituting (4.2) into the objective function, we are left with the following problem:

sup
h∈C6

{∥∥∥PCf̄
(f0 − λL∗h)− (f0 − λL∗h)

∥∥∥
2

L2(Eµ)
− ∥f0 − λL∗h∥2L2(Eµ)

}
;

since we are only concerned with the argument, the term ∥f0∥2L2(Eµ) is omitted. Multiplying
by −1, we convert this to a minimization problem:

(4.3) inf
h∈C6

{
−
∥∥∥PCf̄

(f0 − λL∗h)− (f0 − λL∗h)
∥∥∥
2

L2(Eµ)
+ ∥f0 − λL∗h∥2L2(Eµ)

}
.
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If we denote the objective function of (4.3) as q(h), then the formal gradient of q is given
by

∇q(h) = 2λLPCf̄
(f0 − λL∗h).

We then apply a gradient projection method to approximate the minimizer; for a given value
hm−1, the next iteration is

hm = PC6

(
hm−1 −

2

ξ
λLPCf̄

(f0 − λL∗hm−1)

)
,

where ξ denotes the Lipschitz constant of ∇q.
Suppose we are given the initial guess f0, an upper bound Ξ on the Lipschitz constants

ξ, and the number of iterations M . Then Algorithm 1 is used to approximate the projection
PC̃3

f0. For improved performance, we implement Algorithm 2 using Nesterov’s method [1, 14].

Algorithm 1 GP (f0,λ,Ξ,M).

h0 = 0
for m← 1 to M do

hm = PC6

(
hm−1 −

2

Ξ
λLPCf̄

(f0 − λL∗hm−1)

)

end for
f1 = f0 − λL∗hM
return f1

Algorithm 2 FGP (f0,λ,Ξ,M).

h0 = h′1 = 0
t1 = 1
for m← 1 to M do

hm = PC6

(
h′m −

2

Ξ
λLPCf̄

(f0 − λL∗hm−1)

)

tm+1 =
1 +

√
1 + 4t2m
2

h′m+1 = hm +

(
tm − 1

tm + 1

)
(hm − hm−1)

end for
f1 = f0 − λL∗hM
return f1

4.3. Simulation results. The following reconstruction experiment uses two-dimensional
circular fan-beam projection data that was generated using a ray-driven discrete projector.
We use a two-dimensional inner organ phantom (cf. Figure 3), which has size 512× 512 with
1 × 1 mm2 pixel size. This is a virtual human phantom that segments real X-ray computed
tomography images. The number of detectors in the array is 390, with 1 mm pitch, and the
number of views is 1200 for 360◦ scanning. The distance from the source to the rotation axisD
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Figure 3. Two-dimensional inner organ phantom. The red circle indicates the FOV.

is 800 mm, and the distance from the source to the detector is 1400 mm. The radius of the
ROI is approximately 110 mm, so it does not cover the entire domain.

For implementation, we define a set of chord lines {ln : n = 1, . . . , N} connecting points on
the path of the scanner. These chord lines are parallel to the x2-axis (cf. Figure 4) and cover
the FOV. The line spacing is equivalent to the resolution of the object, and we reconstruct
I on these lines. On the intersection between ln and the FOV (the interval (e2, e3)), the
DBP data is computed from the fan-beam data as in [22]. For this step, we used a pixel-
driven backprojector, which is not adjoint to the ray projector. Then we apply the interior
tomography algorithm with a generalized TV penalty. With the simulation environment
described above and the inner organ phantom in Figure 3, the truncation rate (the length of
the support of the line in the FOV (e2, e3) divided by length of support of the line across the
image (e1, e4)) of each chord line ranges from 0 to 0.95, and the average truncation rate is
approximately 0.75.

Figure 5 shows the reconstructed images for the two-dimensional circular fan-beam sim-
ulation. Figure 5(a) displays the phantom only in the ROI. This phantom has complicated
structures even though it is piecewise constant, as can be seen in the line profiles of Fig-
ure 7. Figure 5(b) is obtained by taking the one-dimensional inverse Hilbert transform of
DBP signals. In this case, the overall structure is recovered, but its value is not correct due
to truncation. Figures 5(c) and 5(d) were created using the proposed interior tomography
algorithm with first and second order generalized TV seminorms. In (1.1), K = 1 and K = 2
denote first and second order TV, respectively. Comparing the results of Figure 5, we see
that the results in (c) and (d) are much better than (b). The first order reconstruction is
constant over larger regions, and some of the small structures are lost. However, the secondD

ow
nl

oa
de

d 
02

/1
9/

15
 to

 1
28

.1
78

.4
8.

12
7.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERIOR TOMOGRAPHY USING 1D GENERALIZED TV 243
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e3
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Scanner Path

Figure 4. Chord lines for two-dimensional circular fan-beam computed tomography.

order reconstruction seems to more accurately capture these small, fine-detailed structures.
Figure 6 contains zoomed regions of the reconstructed images from Figure 5. In Figure 6(c),
the reconstruction using the second order TV contains small structures similar to the ground
truth even though it is blurred, but in Figure 6(b) all of the structures vanish except the large
one.

Figure 7 contains line profiles of the reconstructed images from Figure 5. For each recon-
struction result, the values along two chosen chord lines are plotted. In each column, the plots
represent different reconstruction techniques on the same chord line. As we have explained,
the graphs of the nonregularized method, Figure 7(a), are off by a constant with a roll-off
around the edges, even though the shape appears to be correct. In Figures 7(b) and 7(c) the
proposed method succeeds in obtaining the correct values in general. Again we see that the
second order TV seminorm (Figure 7(c)) produces a better fit to the small structures than
the first order TV seminorm (Figure 7(b)).

5. Discussion. In this work, our focus was the mathematical foundation of a tomographic
reconstruction algorithm. We have addressed the interior tomography problem for multi-
dimensional images. We proposed a one-dimensional reconstruction procedure that reduces
the complexity of the problem, but we are not losing generality. In fact, our approach handles
more general images than previous interior tomography methods.

In addition, we have provided some experimental results that support our approach. Some
issues that remain to be addressed are the stability of the method and the influence of noise.D
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(a) Ground truth (b) Inverse Hilbert transform

(c) First order TV (d) Second order TV

Figure 5. Images reconstructed from simulated two-dimensional circular fan-beam computed tomography data.

(a) Ground truth (b) First order TV (c) Second order TV

Figure 6. Zoomed reconstruction images from simulated two-dimensional circular fan-beam computed to-
mography data.
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(a) Inverse Hilbert transform

(b) First order TV

(c) Second order TV

Figure 7. Reconstruction line profiles from simulated two-dimensional circular fan-beam computed tomog-
raphy data. The solid line represents the reconstruction, while the dashed line is the ground truth.

As we increase the order of the multispline model, we can recover a larger class of functions;
however, we expect there to be a trade-off with the stability of the method. Also, in the
presence of noise, it may be preferable to choose a lower order model to prevent overfittingD
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the noisy data. Our early numerical results are promising, and this leads us to move forward
with a more detailed evaluation, which will be presented in a future work.

Appendix A. Backprojection operator properties. It is well known that the standard
backprojection operator is the adjoint of the Radon operator. Here, we verify that our modi-
fied backprojection operator also satisfies a duality property with the Radon operator. Fun-
damentally, there is no real distinction between these two relationships. Our backprojection
operator has a restricted domain, which corresponds to a modified inner product.

Proposition A.1. The backprojection operator Bϕ0 is dual to the Radon operator R in the
following sense. For any image I in the Schwartz space S(Rd) and any sinogram J ∈ S(Sd−1×
R), we have

∫

Sd−1
⋂
{φ·ϕ0≥0}

∫

R
RI(φ, s)J(φ, s)dsdφ =

∫

Rd
I(x)Bϕ0J(x)dx.

Proof. For any φ ∈ Sd−1, we have
∫

R
RI(φ, s)J(φ, s)ds =

∫

R

∫

φ⊥
I(sφ+ y)J(s,φ)dyds.

Then we change variables, setting x = sφ+ y, so
∫

R
RI(s,φ)J(s,φ)ds =

∫

Rd
I(x)J(x · φ,φ)dx.

Now, we integrate both sides with respect to φ to obtain the result.
∫

Sd−1
⋂
{φ·ϕ0≥0}

∫

R
RI(s,φ)J(s,φ)dsdφ =

∫

Rd
I(x)

∫

Sd−1
⋂
{φ·ϕ0≥0}

J(x · φ,φ)dφdx

=

∫

Rd
I(x)Bϕ0J(x)dx.

This duality property is used to find the Fourier domain formulation of the backprojection
operator, as stated in Lemma 1.3.

Proof of Lemma 1.3. For I ∈ S(Rd), duality implies that
∫

Rd
I(x)F {Bϕ0J} (x)dx =

∫

Rd
Î(x)Bϕ0J(x)dx

=

∫

Sd−1
⋂
{φ·ϕ0≥0}

∫

R
RÎ(φ, s)J(φ, s)dsdφ

=

∫

Sd−1
⋂
{φ·ϕ0≥0}

∫

R
F−1

{
RÎ(φ, ·)

}
(ρ)F {J(φ, ·)} (ρ)dρdφ.

Then we change variables, setting y = ρφ. Note that if ρ > 0, then y · ϕ0 > 0 and ρ = |y|.
When ρ < 0, we have ρ = − |y|. Consequently,
∫

Rd
I(x)F {Bϕ0J} (x)dx =

∫

Rd
I(y)F

{
J

(
sgn(y · ϕ0)

y

|y| , ·
)}

(sgn(y · ϕ0)) |y|1−d dy.
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