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Optimal Isotropic Wavelets for Localized
Tight Frame Representations

John Paul Ward, Pedram Pad, and Michael Unser

Abstract—In this letter, we aim to identify the optimal isotropic
mother wavelet for a given spatial dimension based on a localiza-
tion criterion. Within the framework of the calculus of variations,
we specify an Euler-Lagrange equation for this problem, and we
find the unique analytic solutions. In the one- and two-dimensional
cases, the derived wavelets are well known.

Index Terms—Calculus of variations, localization, Simoncelli
wavelets, wavelet tight frames.

I. INTRODUCTION

A N ISOTROPICmultiresolution analysis, as defined in [1],
consists of subspaces that are invariant under rotation and

translation. These invariances are ideal for image processing
tasks, since many natural images contain features that are sim-
ilar up to a rigid motion.
The property of invariance to Euclidean motions restricts the

class of wavelets that we can consider. Essentially, the mother
wavelet must be band-limited, cf. [1, Proposition 2.2]. We also
require the wavelet to generate a tight frame so that the wavelet
system is robust to perturbations and satisfies a Parseval-type
energy preservation property [2]. If we further add an assump-
tion on its support in the Fourier domain (cf. Assumption 2),
then we can take advantage of a fast filterbank implementation
[3, Section IV]. A general construction for wavelets of this type
can be found in [4], and commonly used versions include the fol-
lowing: Held [5], Papadakis [1], and Simoncelli [6] (which was
given as an example in [4]). An overview of these can be found
in [3]. Such wavelets, and their extensions, have numerous ap-
plications, e.g. [1], [5]–[10].
In this letter, we consider the optimal wavelet to be the one

that is the most localized. Poorly localized wavelets have long
range influence on a signal, so small errors are propagated over
longer distances. Localization, or concentration in a neighbor-
hood of a point, is important for reducing boundary artifacts.
Also, better localization reduces approximation error in com-
puter discritization.
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Variance criteria for finding optimal basis function are
common in the literature. One of the earliest works in this di-
rection is [11], where Gabor identifies the modulated Gaussian
as the one-dimensional function that provides an equality for
the Heisenberg uncertainty principle. His techniques are similar
to ours, as he uses the the calculus of variations. Also, the
authors of [12] use an uncertainty principle to motivate their
construction of polyharmonic B-splines and corresponding
wavelets.
Several authors have studied prolate spheriodal wave func-

tions asminimizers of localization criteria [13]–[17]. In [18], the
authors consider the variance of radial wavelets; however, they
do not impose our tight frame constraint. Furthermore, in [19]
and [20], the authors propose localized tight frames on spheres,
again using a variance criterion.
The main difference between our work and these previous re-

sults is that we directly impose the tight frame constraint and
use it as a normalization factor, rather than an term. The
closest work to ours is [21], where the authors numerically op-
timized tight frame mother wavelets with an added normal-
ization term. They also consider a one-dimensional variance of
the wavelet profile, rather than the two-dimensional variance of
the wavelet itself. Let us also point out that our localization cri-
terion has a simpler formulation, which allows us to solve the
problem analytically.
It is interesting to note that in the one- and two-dimensional

setting, we recover known wavelets. The optimal wavelet for
the one-dimensional case is in the Held [5] family. In the two-di-
mensional case, the derived wavelet is the one that was proposed
by Simoncelli for his equiangular design [6].
In the remainder of this section, we cover background ma-

terial on wavelets, tight frames, and radial Fourier transforms.
We also describe our localization criteria. In Section II, we pre-
cisely formulate the problem that we consider and interpret it
in the Fourier domain in a simplified form. In Section III, we
present the optimal wavelets as analytic solutions of Euler-La-
grange equations, and we plot some of them.

A. Background and Preliminaries

The Fourier transform of a function is

(1)

where denotes the usual inner product on .
For a radial function , its Fourier transform

is also radial; i.e., . The one-dimensional
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frequency domain profile can be computed directly from the
one-dimensional spatial profile as

(2)

cf. [22, Chapter 5], and we use to denote this Hankel
transform mapping; i.e, . When the derivatives and
Fourier transforms exist, we have the dimension walk result

(3)

cf. [23, Theorem 1].
Let be a radial function. We define its dilated

and shifted versions as

(4)

for and . We use the dot notation, so the symbol
is a placeholder for the variable .
We say that the mother wavelet generates a tight frame if

(5)

for all . This implies that the wavelet transformation
is self-reversible in the sense that

(6)

B. Measure of Localization
Our aim is to make the representation of any function

in the wavelet frame as local as possible. The local en-
ergy of a function in a given neighborhood should be captured
by the wavelets that are centered close to that neighborhood.
Proposition 1: Suppose is supported in the ball

of radius centered at the origin. For a given , there is a
constant , depending on , and such that the wavelet
coefficients of satisfy

(7)

for sufficiently large.
Proof: The coefficients are

(8)

Changing variables, we write

(9)
Finally, we require and use the support condition

along with the Cauchy-Schwartz inequality to obtain the bound
in (7).
In the previous proposition, the number specifies the

rate of decay of the coefficients as , while the term
affects the size of the constant in front.

Also, note that while this proposition is stated for compactly
supported functions, there is a similar result for general func-

tions . One can view such an as an infinite sum of compactly
supported functions , centered at the lattice points . The
function contains the local information of near , and the
wavelet coefficients of satisfy the estimate

(10)

in analogy with (7).
Considering this analysis, we would like to use a wavelet for

which is minimal. Since the weight function
is homogeneous, it suffices to solely consider the case .
Moreover, the choice corresponds to a non-normalized
variance of , and we shall focus on this case.
In summary, we propose the following measure of localiza-

tion for an isotropic wavelet :

(11)

subject to the constraint (5).

II. PROBLEM FORMULATION

Our goal is to identify the isotropic wavelet
that minimizes as defined in (11). We assume that is
the mother wavelet for a tight wavelet frame, and its Fourier
transform is the isotropic function .
Assumption 2: The support of is .
This assumption on the support of means that the tight

frame constraint (5) is equivalent to

(12)

for every , [24, Chapter 3].

A. Fourier Domain Interpretation
Using properties of the Fourier transform, we interpret

as a functional on the Fourier profile . In the following, de-
notes equality up to a multiplicative constant; this simplifies the
expression, without affecting the minimization problem. The
Plancherel relationship for Fourier implies

(13)

(14)

Using (3), we have

(15)

Notice that this functional involves a first order differential
operator applied to . Choosing a larger values of leads to a
more complex functional with an th order differential operator
applied to .We postpone the analysis of this higher order case
to a future work.

B. Tight Frame Condition
Here, we include the tight frame condition (12) in (15). To-

gether with the support assumption on , (12) means that
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Fig. 1. Plots of the optimal wavelet profiles for .

is specified by its values on , a proper subset of its sup-
port. On

(16)

Using this equation, we restate as an integral on .
Taking the derivative of (16),

(17)

A change of variables gives

(18)

(19)

so according to (15),

(20)

III. MINIMIZATION

We use techniques from the calculus of variations to refor-
mulate the minimization problem. After making a simplifying
substitution, we define the Euler-Lagrange equation for the
stated problem; this is a differential equation that is satisfied by
the minimizers of certain functionals [25]. The minimization
is solved analytically, where the cases and are
treated separately. The derived wavelet profiles are plotted
in Fig. 1, for .
The constant , depending on , appears sev-

eral times in our calculations, so we define it here to simplify
some expressions.

A. Case:
We simplify (20) using the fact that ; i.e. we set

. The resulting functional is

(21)

Based on this representation, we define the functionals

(22)

and

(23)

so that . The boundary conditions for in the
functional are and .
The Euler-Lagrange equation for is

(24)

which is equivalent to

(25)

For , (25) simplifies to

(26)
For , (25) simplifies to

(27)

Proposition 3: For the cases and , the unique
minimizers of (23) are

(28)

and

(29)

respectively.
The wavelet profiles corresponding to the minimizers in

Proposition 3 are

(30)

and

(31)

Notice that they are the Held and Simoncelli wavelets, which
are depicted in Fig. 1.

B. Case:
For dimensions greater than 2, we use a different substitu-

tion. We make use of the Jacobi elliptic functions and
[26, Chapter 11]. They satisfy the addition formulas

(32)
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(33)

and the differentiation rules

(34)

(35)

We find a simplified form of (20) by making the substitution
. The result is

(36)

As in the case , we define functionals

(37)

and

(38)

so that . The boundary conditions for in the
functional are

(39)

(40)

The Euler-Lagrange equation for is

(41)

Proposition 4: For , the unique minimizer of (36)
is defined as follows. The value of is the unique solution
of the equation in

(42)

where is the elliptic integral of the second kind

(43)

The resulting wavelet profiles are plotted in Fig. 1, for
.

IV. SUMMARY AND FUTURE WORK

We have considered the problem of identifying the optimal
band-limited isotropic mother wavelet for a tight frame, using a
localization criterion. We found analytic solutions for arbitrary
spatial dimension . In the cases and , we obtained
previously proposed wavelet profiles, namely Held ( ) and
Simoncelli ( ).
In this work, we focused on the localization criterion with

parameter , and the selection of optimal wavelets for
remains open. We intend to address this point in the

future.
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