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Normal and pathologic neurobiological processes influence brain morphology in coordi-
nated ways that give rise to patterns of structural covariance (PSC) across brain regions 
and individuals during brain aging and diseases. The genetic underpinnings of these pat-
terns remain largely unknown. We apply a stochastic multivariate factorization method 
to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive 
data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated 
with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% 
were independently replicated. Key pathways influencing PSCs involve reelin signaling, 
apoptosis, neurogenesis, and appendage development, while pathways of breast cancer 
indicate potential interplays between brain metastasis and PSCs associated with neuro-
degeneration and dementia. Using support vector machines, multi-scale PSCs effectively 
derive imaging signatures of several brain diseases. Our results elucidate genetic and bio-
logical underpinnings that influence structural covariance patterns in the human brain.

structural covariance | imaging genetics | matrix factorization

Brain structure and function are interrelated via complex networks that operate at multiple 
scales, ranging from cellular and synaptic processes, such as neural migration, synapse 
formation, and axon development, to local and broadly connected circuits (1). Due to a 
fundamental relationship between activity and structure, many normal and pathologic 
neurobiological processes, driven by genetic and environmental factors, collectively cause 
coordinated changes in brain morphology. Structural covariance analyses investigate such 
coordinated changes by seeking patterns of structural covariation (PSC) across brain 
regions and individuals (1). For example, during adolescence, PSCs derived from MRI 
have been considered to reflect a coordinated cortical remodeling as the brain establishes 
mature networks of functional specialization (2). Structural covariance is not only related 
to normal brain development or aging processes but can also reflect coordinated brain 
change due to disease. For example, individuals with motor speech dysfunction may 
develop brain atrophy in Broca's inferior frontal cortex and co-occurring brain atrophy 
in Wernicke’s area of the superior temporal cortex (3). Refer to Fig. 1C for an illustrative 
depiction.

The human brain develops, matures, and degenerates in coordinated patterns of struc-
tural covariance at the macrostructural level of brain morphology (1). However, the mech-
anisms underlying structural covariance are still unclear, and their genetic underpinnings 
are largely unknown. We hypothesized that brain morphology was driven by multiple 
genes (i.e., polygenic) collectively operating on different brain areas (i.e., pleiotropic), 
resulting in connected networks covaried by normal aging and various disease-related 
processes. Along the causal pathway from underlying genetics to brain morphological 
changes, we sought to elucidate which genetic underpinnings (e.g., genes), biological 
processes (e.g., neurogenesis), cellular components (e.g., nuclear membrane), molecular 
functions (e.g., nucleic acid binding), and neuropathological processes (e.g., Alzheimer's 
disease) might influence the formation, development, and changes of structural covariance 
patterns in the human brain.

Previous neuroimaging genome-wide association studies (GWAS) (4, 5) have partially 
investigated the abovementioned questions and expanded our understanding of the genetic 
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architecture of the human brain. However, they focused on con-
ventional neuroanatomical regions of interest (ROI) instead of 
data-driven PSCs. In brain imaging research, prior studies have 
applied structural covariance analysis to elucidate underlying coor-
dinated morphological changes in brain aging and various brain 
diseases (1) but have had several limitations. They often relied on 
pre-defined neuroanatomical ROIs to construct inter- and 
intra-individual structural covariance networks. These a priori ROIs 
might not optimally reflect the molecular-functional characteristics 
of the brain. In addition, most population-based studies have inves-
tigated brain structural covariance within a relatively limited scope, 
such as within relatively small samples, over a relatively narrow age 
window [e.g., adolescence (2)], within a single disease [e.g., 
Parkinson’s disease (6)], or within datasets lacking sufficient diver-
sity in cohort characteristics or MRI scanner protocols. These have 
been imposed, in part, by limitations in both available cohort size 
and in the algorithmic implementation of structural covariance 
analysis, which has been computationally restricted to modest sam-
ple sizes when investigated at full image resolution. Last, prior 

studies have examined brain structural covariance at a single fixed 
ROI resolution/scale/granularity. While the optimal scale is 
unknown and may differ by the question of interest, the highly 
complex organization of the human brain may demonstrate struc-
tural covariance patterns that span multiple scales (7, 8).

To address this gap, we modified our previously proposed 
orthogonally projective non-negative matrix factorization [opNMF 
(9)] to its stochastic counterpart, sopNMF. This adaptation allowed 
us to train the model iteratively on large-scale neuroimaging data-
sets with a pre-defined number of PSCs (C). Non-negative matrix 
factorization has gained significant attention in neuroimaging due 
to its ability to reduce complex data into a sparse, part-based brain 
representation by projection onto a relatively small number of 
components (the PSCs). NMF has been shown to substantially 
improve interpretability and reproducibility compared to other 
unsupervised methods, such as PCA and ICA, thanks to the 
non-negative constraint that produces parcellation-like decompo-
sitions of complex signals. Our opNMF/sopNMF approach 
imposed an additional orthonormality constraint (9) (Eq. 1 in 

Machine learning
SNP Heritability Classification

GWAS

Gene Gene 
set

Summary 
statistics

A Unit I: Multi-scale patterns of structural covariance

B Unit II: Application of structural covariance

C=64 C=128 C=256 C=512C=32 C=1024

C Unit III: BRIDGEPORT: A Web portal for dissemination 

Pattern of 
structural covariance 

Fig. 1. Study workflow. (A) Unit I: The stochastic orthogonally projective non-negative matrix factorization (sopNMF) algorithm was applied to a large, disease-
diverse population to derive multi-scale patterns of structural covariance (PSC) at different scales (C = 32, 64, 128, 256, 512, and 1,024; C represents the number 
of PSCs). (B) Unit II: Two types of analyses were performed in this study: Genome-wide association studies (GWAS) relate each of the PSCs (N = 2,003) to common 
genetic variants; pattern analysis via machine learning demonstrates the utility of the multi-scale PSCs in deriving individualized imaging signatures of various 
brain pathologies. (C) Unit III: BRIDGEPORT is a web portal that makes all resources publicly available for dissemination. As an illustration, a Manhattan plot for 
PSC (C64-3, the third PSC of the C64 atlas) and its 3D brain map are displayed.D
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Method 1), further enhancing sparsity and facilitating clinical inter-
pretability. In our previous work, we applied the opNMF method 
to 934 youths ages 8 to 20 to depict the coordinated growth of 
structural brain networks during adolescence—a period character-
ized by extensive remodeling of the human cortex to accommodate 
the rapid expansion of the behavioral repertoire (2). Remarkably, 
this study revealed PSCs that exhibited a cortical organization 
closely aligned with established functional brain networks, such as 
the well-known 7-network functional parcellation proposed by 
Yeo et al. (10). Notably, this alignment emerged without prior 
assumptions, was data driven, and hypothesis-free, and potentially 
reflected underlying neurobiological processes related to brain 
development and aging. Herein, we used large-scale neuroimaging 
data to investigate the underlying genetic determinant influencing 
such changes in structural covariance patterns in the human brain.

We examined structural covariance of regional cortical and sub-
cortical volume in the human brain using MRI from a diverse 
population of 50,699 people from 12 studies, 130 sites, and 12 
countries, comprised of cognitively healthy individuals, as well as 
participants with various diseases/conditions over their lifespan (ages 
5 through 97). Herein, we present results from coarse to fine scales 
corresponding to C = 32, 64, 128, 256, 512, and 1,024. We hypoth-
esized that PSCs at multiple scales could delineate the human 
brain's multi-factorial and multi-faceted morphological landscape 
and genetic architecture in healthy and diseased individuals. We 
examined the associations between these multi-scale PSCs and com-
mon genetic variants at different levels (N = 8,469,833 SNPs). In 
total, 617 newly identified genomic loci were identified; key path-
ways (e.g., neurogenesis and reelin signaling) contributed to shaping 
structural covariance patterns in the human brain. In addition, we 
leveraged PSCs at multiple scales to better derive individualized 
imaging signatures of several diseases than any single-scale PSCs 
using support vector machines. All experimental results and the 
multi-scale PSCs were integrated into the MuSIC (Multi-scale 
Structural Imaging Covariance) atlas and made publicly accessible 
through the BRIDGEPORT (BRaIn knowleDGE PORTal) web 
portal: https://www.cbica.upenn.edu/bridgeport/. Table 1 provides 
an overview of the abbreviations used in the present study.

Results

We summarize this work in three units (I to III) outlined in Fig. 1. 
In Unit I (Fig. 1A), we present the stochastic orthogonally projective 
non-negative matrix factorization (sopNMF) algorithm (Method 1), 
optimized for large-scale multivariate structural covariance analysis. 

The sopNMF algorithm decomposes large-scale imaging data 
through online learning to overcome the memory limitations of 
opNMF. A subgroup of participants with multiple disease diagnoses 
and healthy controls (ages 5 to 97, training population, N = 4,000, 
Method 2) were sampled from the discovery set (N = 32,440, Method 
2); their MRI underwent a standard imaging processing pipeline 
(Method 3A). The processed images were then fit to sopNMF to 
derive the multi-scale PSCs (N = 2,003) from the loadings of the 
factorization (Method 1). We incorporate participants with various 
disease conditions because previous studies have demonstrated that 
inter-regional correlated patterns (i.e., depicting a network) show 
variations in healthy and diseased populations, albeit to a differing 
degree (11). Multi-scale PSCs were extracted across the entire pop-
ulation and statistically harmonized (12) (Method 3B). Unit II 
(Fig. 1B) investigates the harmonized data for 2,003 PSCs (13 PSCs 
have vanished in this process for C = 1,024; see Method 1) in two 
brain structural covariance analyses. Specifically, we performed i) 
GWAS (Method 4) that sought to discover associations of PSCs at 
single nucleotide polymorphism (SNP), gene, or gene set-level; and 
ii) pattern analysis via support vector machine (Method 5) to derive 
individualized imaging signatures of several brain diseases and con-
ditions. Unit III (Fig. 1C) presents BRIDGEPORT, making these 
massive analytic resources publicly available to the imaging, genom-
ics, and machine learning communities.

Patterns of Structural Covariance via Stochastic Orthogonally 
Projective Non-Negative Matrix Factorization. We first validated 
the sopNMF algorithm by showing that it converged to the global 
minimum of the factorization problem using the comparison 
population (N = 800, Method 2). The sopNMF algorithm 
achieved similar reconstruction loss and sparsity as opNMF but 
at reduced memory demand (SI Appendix, eFigure 1). The lower 
memory requirements of sopNMF made it possible to generate 
multi-scale PSCs by jointly factorizing 4,000 MRIs in the training 
population. The results of the algorithm were robust and obtained 
a high reproducibility index (RI) (SI  Appendix, eMethod 2) in 
several reproducibility analyses: split-sample analysis (RI = 0.76 ±   
0.27), split-sex analysis (RI = 0.79 ±   0.27), and leave-one-site-out 
analysis (RI = 0.65 to 0.78 for C32 PSCs) (SI Appendix, eFigure 2). 
We then extracted the multi-scale PSCs in the discovery set  
(N = 32,440) and the replication set (N = 18,259, Method 2) for 
Unit II. These PSCs succinctly capture underlying neurobiological 
processes across the lifespan, including the effects of typical aging 
processes and various brain diseases. In addition, the multi-scale 
representation constructs a hierarchy of brain structure networks 

Table 1. Abbreviations used in the present study
Item Abbreviation Item Abbreviation

Pattern of structural covariation PSC Independent component analysis ICA

Genome-wide association study GWAS BRaIn knowleDGE PORTal BRIDGEPORT

Orthogonal projective non-negative matrix 
factorization

opNMF Multi-scale Structural Imaging Covari-
ance

MuSIC

Stochastic orthogonal projective non-negative matrix 
factorization

sopNMF Machine learning ML

Principal component analysis PCA UK Biobank UKBB

Imaging-based coordinate SysTem for AGing and 
NeurodeGenerative diseases

iSTAGING Psychosis heterogeneity evaluated via 
dimensional neuroimaging

PHENOM

Single nucleotide polymorphism SNP Region of interest ROI

MRI MRI Automated anatomical labeling AAL

MUlti-atlas region Segmentation utilizing Ensembles MUSE Alzheimer’s disease AD

Spatial PAtterns for REcognition SPARE Support vector machine SVMD
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(e.g., PSCs in cerebellum regions), which models the human brain 
in a multi-scale topology (7, 13).

Patterns of Structural Covariance Are Highly Heritable. The 
multi-scale PSCs are highly heritable (0.05 < h2 < 0.78), showing 
high SNP-based heritability estimates (h2) (Method 4B) for the 
discovery set (Fig.  2). Specifically, the h2 estimate was 0.49 ±   
0.10, 0.39 ±   0.14, 0.29 ±   0.15, 0.25 ±   0.15, 0.27 ±   0.15, and 
0.31 ±   0.15 for scales C = 32, 64, 128, 256, 512, and 1024 of 
the PSCs, respectively. The Pearson correlation coefficient between 
the two independent estimates of h2 was r = 0.94 (P-value < 10–6, 
between the discovery and replication sets) in the UK Biobank 
(UKBB) data. The scatter plot of the two sets of h2 estimates is 
shown in SI Appendix, eFigure 3. The h2estimates and P-values for 
all PSCs are detailed in Dataset S1 (discovery set) and Dataset S2 
(replication set). Our results confirm that brain structure is 
heritable to a large extent and identify the spatial distribution of 
the most highly heritable regions of the brain (e.g., subcortical 
gray matter structures and cerebellum regions) (14).

617 Newly Identified Genomic Loci of Patterns of Structural 
Covariance. We found genomic locus–PSC pairwise associations 
(Method 4C, SI Appendix, eMethod 5) within the discovery set and 
then independently replicated these associations on the replication 
set. We found that 915 genomic loci had 3,791 loci–PSC pairwise 
significant associations with 924 PSCs after Bonferroni correction 
(Method 4G) for the number of PSCs (P-value threshold per scale: 
10.3 > −log10[P-value] > 8.8) (Dataset S3 and Fig. 3A). Our results 
showed that the formation of these PSCs is largely polygenic; the 
associated SNPs might play a pleiotropic role in shaping these 
networks.

Compared to previous literature, out of the 915 genomic loci, 
the multi-scale PSCs identified 617 newly identified genomic loci 
not previously associated with any traits or phenotypes in the 
GWAS Catalog (15) (Dataset S4 and Fig. 3B, query date: April 
5th, 2023). These associations might indicate subtle neurobiologi-
cal processes that are captured thanks to the biologically relevant 
structural covariance expressed by sopNMF. The multi-scale PSCs 
identified many associations by constraining this comparison to 
previous neuroimaging GWAS (12, 13) using T1w MRI-derived 
phenotypes (e.g., regions of interest from conventional brain 
atlases) (Fig. 3B and SI Appendix, eTable 3 and Datasets S5–S7).

Our UKBB replication set analysis (Method 4H) demonstrated 
that 3,638 (96%) exact genomic locus–PSC associations were 
replicated at nominal significance (−log10[P-value] > 1.31), 2,705 
(72%) of which were significant after correction for multiple com-
parisons (Method 4G, −log10[P-value] > 4.27). We present this 
validation in Dataset S8 from the replication set. The summary 
statistics, Manhattan, and QQ plots derived from the combined 
population (N = 33,541) are presented in BRIDGEPORT. In 
addition to the abovementioned replication analyses, we also per-
formed several sensitivity analyses (SI Appendix, eFigure 4A). Our 
findings revealed the robustness of GWAS signals across both the 
discovery and replication sets, even when considering four addi-
tional brain-related covariates. However, the generalizability of 
these signals was limited in non-European ancestry populations 
and independent disease-specific populations (SI Appendix, eText 
1 and eFigure 4).

Gene Set Enrichment Analysis Highlights Pathways That Shape 
Patterns of Structural Covariance. For gene-level associations 
(Method 4D), we found that 164 genes had 2,489 gene-PSC 
pairwise associations with 445 PSCs after Bonferroni correction for 
the number of genes and PSCs (P-value threshold: 8.6 > −log10[P-
value] > 7.1) (Dataset S9).

Based on these gene-level P-values, we performed hypothesis-free 
gene set pathway analysis using MAGMA (16) (Method 4E): a 
more stringent correction for multiple comparisons was performed 
than the prioritized gene set enrichment analysis using GENE2FUN 
from FUMA (Method 4F and Fig. 4). We identified that six gene 
set pathways had 18 gene set-PSC pairwise associations with 17 
PSCs after Bonferroni correction for the number of gene sets and 
PSCs (N = 16,768 and C from 32 to 1,024, P-value threshold: 
8.54 > −log10[P-value] > 7.03) (Fig. 3C and Dataset S10). These 
gene sets imply critical biological and molecular pathways that 
might shape brain morphological changes and development. The 
reelin signaling pathway regulates neuronal migration, dendritic 
growth, branching, spine formation, synaptogenesis, and synaptic 
plasticity (17). The appendage morphogenesis and development 
pathways indicate how the anatomical structures of appendages 
are generated, organized, and progressed over time, often related 
to the cell adhesion pathway. These pathways elucidate how cells 
or tissues can be organized to create a complex structure like  
the human brain. In addition, the integral component of the 
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cytoplasmic side of the endoplasmic reticulum membrane is 
thought to form a continuous network of tubules and cisternae 
extending throughout neuronal dendrites and axons (18). The 
DSCAM (Down syndrome cell adhesion molecule) pathway likely 
functions as a cell surface receptor mediating axon pathfinding. 
Related proteins are involved in hemophilic intercellular interac-
tions (19). Last, Nikolsky et al. (20) defined genes from the breast 
cancer 20Q11 amplicon pathway that were involved in the brain 
might indicate the brain metastasis of breast cancer, which is usu-
ally a late event with deleterious effects on the prognosis (21). In 
addition, previous findings (22, 23) revealed an inverse relation-
ship between Alzheimer’s disease and breast cancer, which might 
indicate a close genetic relationship between the disease and brain 
morphological changes mainly affecting the entorhinal cortex and 
hippocampus (PSC: C128_3 in Fig. 4).

Illustrations of Genetic Loci and Pathways Forming Two 
Patterns of Structural Covariance. To illustrate how underlying 
genetic underpinnings might form a specific PSC, we showcased 
two PSCs: C32_4 for the superior cerebellum and C128_3 for 

the hippocampus-entorhinal cortex. The two PSCs were highly 
heritable and polygenic in our GWAS using the entire UKBB data 
(Fig. 4, N = 33,541). We used the FUMA (24) online platform 
to perform SNP2GENE for annotating the mapped genes and 
GENE2FUNC for prioritized gene set enrichment analyses (Method 
4F). The superior cerebellum PSC was associated with genomic 
loci that can be mapped to 85 genes, which were enriched in many 
biological pathways, including psychiatric disorders, biological 
processes, molecular functions, and cellular components (e.g., 
apoptotic process, axon development, cellular morphogenesis, 
neurogenesis, and neuro differentiation). For example, apoptosis—
the regulated cell destruction—is a complicated process that is 
highly involved in the development and maturation of the human 
brain and neurodegenerative diseases (25). Neurogenesis—new 
neuron formation—is crucial when an embryo develops and 
continues in specific brain regions throughout the lifespan (26). 
All significant results of this prioritized gene set enrichment 
analysis are presented in Dataset S11.

For the hippocampus-entorhinal cortex PSC, we mapped 45 
genes enriched in gene sets defined from GWAS Catalog, 
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(PSC) in the human brain are polygenic: The number of genomic loci of each PSC is projected onto the image space to show a statistical brain map characterized 
by the number (C) of PSCs. In addition, common genetic variants exert pleiotropic effects on the PSCs: circular plots showed the number of associated PSCs 
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genomic locus in the circular plots. (B) Newly identified genomic loci revealed by the multi-scale PSCs compared to previous findings from the GWAS Catalog 
(15), T1-weighted MRI GWAS (4, 5), and the AAL atlas regions of interest. The green bar indicates the 617 newly identified genomic loci not previously associated 
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Fig. 4. Illustrations of multiple genetic loci and pathways shaping specific patterns of structural covariance. We demonstrate how underlying genomic loci and 
biological pathways might influence the formation, development, and changes of two specific PSCs: the fourth PSC of the C32 PSCs (C32_4) that resides in the 
superior part of the cerebellum and the third PSC of the C128 PSCs (C128_3) that includes the bilateral hippocampus and entorhinal cortex. We first performed 
SNP2GENE to annotate the mapped genes in the Manhattan plots and then ran GENE2FUNC for the prioritized gene set enrichment analysis (Method 4F). The 
mapped genes are input genes for prioritized gene set enrichment analyses. The heat map shows the significant gene sets from the GWAS Catalog, curated 
genes, and gene ontology (GO) that survived the correction for multiple comparisons. We selectively present the schematics for three pathways: apoptosis, 
neurogenesis, and nuclear membrane function. Several other key pathways are highlighted in bold, and the 3D maps of the two PSCs are presented.
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including Alzheimer’s disease and brain volume derived from hip-
pocampal regions. The hippocampus and medial temporal lobe 
have been robust hallmarks of Alzheimer’s disease (27). In addi-
tion, these genes were enriched in the breast cancer 20Q11 ampli-
con pathway (20) and the pathway of metastatic breast cancer 
tumors (28), which might indicate a specific distribution of brain 
metastases: the vulnerability of medial temporal lobe regions to 
breast cancer (21), or highlight an inverse association between 
Alzheimer’s disease and breast cancer (22). Last, the nuclear mem-
brane encloses the cell’s nucleus—the chromosomes reside 
inside—which is critical in cell formation activities related to gene 
expression and regulation. To further support the overlapping 
genetic underpinnings between this PSC and Alzheimer’s disease, 
we calculated the genetic correlation (rg = −0.28; P-value = 0.01) 
using GWAS summary statistics from the hippocampus-entorhinal 
cortex PSC (i.e., 33,541 people of European ancestry) and a pre-
vious independent study of Alzheimer’s disease (29) (i.e., 63,926 
people of European ancestry) using LDSC (30). All significant 
results of this prioritized gene set enrichment analysis are presented 
in Dataset S12.

Multi-Scale Patterns of Structural Covariance Derive Disease-
Related Imaging Signatures. We investigate the added value of 
the multi-scale PSCs as building blocks of imaging signatures for 
several brain diseases and risk conditions using linear support 
vector machines (SVM) (Method 5) (31). The aim is to harness 
machine learning to drive a clinically interpretable metric for 
quantifying an individual-level risk to each disease category. To 
this end, we define the signatures as SPARE-X (Spatial PAtterns 
for REcognition) indices, where X is the disease. For instance, 
SPARE-AD captures the degree of expression of an imaging 
signature of AD-related brain atrophy, which has been shown to 
offer diagnostic and prognostic value in prior studies (32).

The most discriminative indices in our samples were SPARE-AD 
and SPARE-MCI (Fig. 5 and SI Appendix, eTable 4a and eFigure 5). 
C = 1,024 achieved the best performance for the single-scale analysis 
(e.g., AD vs. controls; balanced accuracy: 0.90 ±   0.02; Cohen’s d: 
2.50). Multi-scale representations derived imaging signatures that 
showed the largest effect sizes to classify the patients from the con-
trols (Fig. 5) (e.g., AD vs. controls; balanced accuracy: 0.92 ±   0.02; 
Cohen’s d: 2.61). PSCs obtained better classification performance 
than both AAL (e.g., AD vs. controls; balanced accuracy: 0.82 ±   
0.02; Cohen’s d: 1.81) and voxel-wise regional volumetric maps 
(RAVENS) (33) (e.g., AD vs. controls; balanced accuracy: 0.85 ±   
0.02; Cohen’s d: 2.04) (SI Appendix, eTable 4a and eFigure 5). Our 
classification results were higher than previous baseline studies (34, 
35), which provided an open-source framework to objectively and 
reproducibly evaluate AD classification. Using the same 
cross-validation procedure and evaluation metric, they reported the 
highest balanced accuracy of 0.87 ±   0.02 to classify AD from healthy 
controls. Notably, our experiments followed good practices, 
employed rigorous cross-validation procedures, and avoided critical 
methodological flaws, such as data leakage or double-dipping [refer 
to critical reviews on this topic elsewhere (34, 36)].

To test the robustness of these SPARE indices, we performed 
leave-one-site-out analyses for SPARE-AD using the combined 
2,003 PSCs from all scales (SI Appendix, eTable 4b). Overall, 
holding the ADNI data out as independent test data resulted in 
a lower balanced accuracy (0.88 ± 0.02) compared to the other 
cases for AIBL (0.95 ± 0.02) and PENN data (0.95 ± 0.02). The 
mean balanced accuracy (0.91 ± 0.02) aligns with the nested 
cross-validated results using the full sample (Fig. 5).

BRIDGEPORT: Bridging Knowledge across Patterns of Structural 
Covariance, Genetics, and Clinical Phenotypes. We integrated our 
experimental results and the MuSIC atlas into the BRIDGEPORT 
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Fig. 5. Individualized imaging signatures based on pattern analysis via machine learning. Imaging signatures (SPARE indices) of brain diseases, derived via 
supervised machine learning models, are more distinctive when formed from multi-scale PSCs than single-scale PSCs. The kernel density estimate plot depicts 
the distribution of the patient group (blue) in comparison to the healthy control group (red), reflecting the discriminative power of the diagnosis-specific SPARE 
(imaging signature) indices. We computed Cohen’s d for each SPARE index between groups to present the effect size of its discrimination power. * represents 
the model with the largest Cohen’s d for each SPARE index to separate the control vs. patient groups; # represents the model with the best performance with 
single-scale PSCs. Our results demonstrate that the multi-scale PSCs generally achieve the largest discriminative effect sizes (ES) (SI Appendix, eTable 4a). As a 
reference, Cohen’s d of ≥0.2, ≥0.5, and ≥0.8, respectively, refer to small, moderate, and large effect sizes.D
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online web portal. This online tool allows researchers to interactively 
browse the MuSIC atlas in 3D, query our experimental results via 
variants or PSCs, and download the GWAS summary statistics 
for further analyses. In addition, we allow users to search via 
conventional brain anatomical terms (e.g., the right thalamus 
proper) by automatically annotating traditional anatomic atlas 
ROIs, specifically from the MUSE atlas (37) (SI  Appendix, 
eTable  5), to MuSIC PSCs based on their degree of overlaps 
(SI Appendix, eFigure 6). Open-source software dedicated to image 
processing (37) genetic quality check protocols, MuSIC generation 
with sopNMF, and machine learning (34) is also publicly available 
(see Data, Materials, and Software Availability for details).

Discussion

The current study investigates patterns of structural covariance in 
the human brain at multiple scales from a large population of 
50,699 people and, importantly, a very diverse cohort allowing us 
to capture patterns of structural covariance emanating from nor-
mal and abnormal brain development and aging, as well as from 
several brain diseases. Through extensive examination of the 
genetic architecture of these multi-scale PSCs, we confirmed 
genetic hits from previous T1-weighted MRI GWAS and, more 
importantly, identified 617 newly identified genomic loci and 
molecular and biological pathways that collectively influence brain 
morphological changes and development over the lifespan. Using 
a hypothesis-free, data-driven approach to first derive these PSCs 
using brain MRIs, we then uncovered their genetic underpinnings 
and further showed their potential as building blocks to predict 
various diseases. All experimental results and code are encapsulated 
and publicly available in BRIDGEPORT for dissemination: 
https://www.cbica.upenn.edu/bridgeport/, to enable various neu-
roscience studies to investigate these structural covariance patterns 
in diverse contexts. Together, the current study highlighted the 
adoption of machine learning methods in brain imaging genomics 
and deepened our understanding of the genetic architecture of 
the human brain.

Our findings reveal valuable insights into genetic underpinnings 
that influence structural covariance patterns in the human brain. 
Brain morphological development and changes are largely poly-
genic and heritable, and previous neuroimaging GWAS has not 
fully uncovered this genetic landscape. In contrast, genetic variants, 
as well as environmental, aging, and disease effects, exert pleiotropic 
effects in shaping morphological changes in different brain regions 
through specific biological pathways. The mechanisms underlying 
brain structural covariance are not yet fully understood. They may 
involve an interplay between common underlying genetic factors, 
shared susceptibility to aging, and various brain pathologies, which 
affect brain growth or degeneration in coordinated brain morpho-
logical changes (1). Our data-driven, multi-scale PSCs identify the 
hierarchical structure of the brain under the principle of structural 
covariance and are associated with genetic factors at different levels, 
including SNPs, genes, and gene set pathways. These 617 newly 
identified genomic loci, as well as those previously identified, col-
lectively shape brain morphological changes through many key 
biological and molecular pathways. These pathways are widely 
involved in reelin signaling, apoptotic processes, axonal develop-
ment, cellular morphogenesis, neurogenesis, and neuro differenti-
ation (25, 26), which may collectively influence the formation of 
structural covariance patterns in the brain. Strikingly, pathways 
involved in breast cancer shared overlapping genetic underpinnings 
evidenced in our MAGMA-based and prioritized (GENE2FUNC) 
gene set enrichment analyses (Figs. 3C and 4), which included 
specific pathways involved in breast cancer and metastatic breast 

cancer tumors. One previous study showed that common genes 
might mediate breast cancer metastasis to the brain (21), and a 
later study further corroborated that the metastatic spread of breast 
cancer to other organs (including the brain) accelerated during 
sleep in both mouse and human models (38). We further show-
cased that this brain metastasis of breast cancer might be associated 
with specific neuropathologic processes, which were captured by 
PSCs data driven by Alzheimer’s disease-related neuropathology. 
For example, the hippocampus-entorhinal cortex PSC (C128_3, 
Fig. 4) connected the bilateral hippocampus and medial temporal 
lobe— the salient hallmark of Alzheimer’s disease. Our gene set 
enrichment analysis results further support this claim: the genes 
were enriched in the gene sets of Alzheimer’s disease and breast 
cancer (Fig. 4). Previous research (22, 23) also found an inverse 
association between Alzheimer’s disease and breast cancer. In addi-
tion, PSCs from the cerebellum were the most genetically influ-
enced brain regions, consistent with previous neuroimaging GWAS 
(4, 5). The cerebral cortex has been thought to largely contribute 
to the unique mental abilities of humans. However, the cerebellum 
may also be associated with a much more comprehensive range of 
complex cognitive functions and brain diseases than initially 
thought (39). Our results confirmed that many genetic substrates 
might support different molecular pathways, resulting in cerebellar 
functional organization, high-order functions, and dysfunctions 
in various brain disorders.

The current work demonstrates that appropriate machine learn-
ing analytics can be used to shed light on brain imaging genetics. 
Previous neuroimaging GWAS leveraged multimodal imaging- 
derived phenotypes from conventional brain atlases (4, 5) (e.g., 
the AAL atlas). In contrast, multi-scale PSCs are purely data-driven 
and likely to reflect the dynamics of underlying normal and patho-
logical neurobiological processes giving rise to structural covari-
ance. The diverse training sample from which the PSCs were 
derived, including healthy and diseased individuals of a wide age 
range, enriched the diversity of such neurobiological processes 
influencing the PSCs. In addition, modeling structural covariance 
at multiple scales (i.e., multi-scale PSCs) indicated that disease 
effects could be robustly and complementarily identified across 
scales (Fig. 5), concordant with the paradigm of multi-scale brain 
modeling (13). Imaging signatures of brain diseases, derived via 
supervised machine learning models, were consistently more dis-
tinctive when formed from multi-scale PSCs than single-scale 
PSCs. Multivariate learning techniques have gained significant 
prominence in neuroimaging and have recently attracted consid-
erable attention in the domain of imaging genomics. These meth-
ods have proven valuable for analyzing complex and high- 
dimensional data, facilitating the exploration of relationships 
between imaging features and genetic factors. For instance, the 
MOSTest, a multivariate GWAS approach, preserves correlation 
structure among phenotypes via permutation on each SNP and 
derives a genotype vector for testing the association across all phe-
notypes (40). A separate study by Soheili-Nezhad et al. demon-
strated that genetic components obtained through PCA or ICA 
applied to neuroimaging GWAS summary statistics exhibited 
greater reproducibility than raw univariate GWAS effect sizes (41). 
A recent study utilized a CNN-based autoencoder to discover new 
phenotypes and identify numerous newly identified genetic signals 
(42). Despite the effectiveness of these multivariate approaches in 
GWAS, they typically conduct phenotype engineering before per-
forming GWAS without explicitly incorporating imaging genetic 
associations during the modeling process. Yang et al. recently 
conducted a study that employed generative adversarial networks 
[termed GeneSGAN (43)] to integrate imaging and genetic var-
iations within the modeling framework to address this limitation. D
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By incorporating both modalities, their approach aimed to capture 
the complexity and heterogeneity of disease manifestations.

MuSIC—with the strengths of being data-driven, multi-scale, 
and disease-effect informative—contributes to the century-old 
quest for a “universal” atlas in brain cartography (44) and is highly 
complementary to previously proposed brain atlases. For instance, 
Chen et al. (45) used a semi-automated fuzzy clustering technique 
with MRI data from 406 twins and parcellated the cortical surface 
area into a genetic covariance-informative brain atlas; MuSIC was 
data-driven by structural covariance. Glasser et al. (46) adopted 
a semi-automated parcellation procedure to create a multimodal 
cortex atlas from 210 healthy individuals. Although this method 
successfully integrates multimodal information from cortical fold-
ing, myelination, and functional connectivity, this semi-automatic 
approach requires significant resources, some with limited reso-
lution. MuSIC allows flexible, multiple scales for delineating 
macroscopic brain topology; including patient samples exposes 
the model to sources of variability that may not be visible in 
healthy controls. Another pioneering endeavor is the Allen Brain 
Atlas project (47), whose overarching goals of mapping the human 
brain to gene expression data via existing conventional atlases, 
identifying local gene expression patterns across the brain in a few 
individuals, and deepening our understanding of the human 
brain’s differential genetic architecture, are complementary to 
ours—characterizing the global genetic architecture of the human 
brain, emphasizing pathogenic variability and morphological 
heterogeneity.

Bridging knowledge across the brain imaging, genomics, and 
machine learning communities is another pivotal contribution 
of this work. BRIDGEPORT provides a platform to lower the 
entry barrier for whole-brain genetic-structural analyses, foster 
interdisciplinary communication, and advocate for research 
reproducibility (34, 48–51). The current study demonstrates the 
broad applicability of this large-scale, multi-omics platform 
across a spectrum of neurodegenerative and neuropsychiatric 
diseases.

The present study has certain limitations. First, the sopNMF 
method utilized in brain parcellation considers only imaging struc-
tural covariance and overlooks the genetic determinants contrib-
uting to forming these structural networks, as indicated by our 
GWAS findings. Consequently, further investigations are needed 
to integrate imaging and genetics into brain parcellation. 
Additionally, it is important to note that our GWAS analyses 
primarily involved participants of European ancestry. To enhance 
genetic findings for underrepresented ethnic groups, future studies 
should prioritize the inclusion of diverse ancestral backgrounds, 
thereby promoting a more comprehensive understanding of the 
genetic underpinnings across different populations.

Methods

Method 1: Structural Covariance Patterns via Stochastic Orthogonally 
Projective Non-Negative Matrix Factorization. The sopNMF algorithm 
is a stochastic approximation built and extended based on opNMF (9, 52). 
We consider a dataset of n MR images and d voxels per image. We represent 
the data as a matrix X where each column corresponds to a flattened image: 

X =

[
x1, x2, … , xn

]
, X ∈ ℝ

d×n
≥0

 . The sopNMF algorithm factorizes X into two 

low-rank ( r  ) matrices W ∈ ℝ
d×r
≥0

 and H ∈ ℝ
r×n
≥0

 under the constraints of non-
negativity and column-orthonormality. Using the Frobenius norm, the loss of this 
factorization problem can be formulated as

	
[1]

where I stands for the identity matrix. The columns wi ∈ ℝ
d , ‖‖wi

‖‖
2
= 1, 

∀ i ∈ {1 … r } of the so-called component matrix W =

[
w1,w2, … ,wr

]
 are 

part-based representations promoting sparsity in data in this lower-dimensional 
subspace. From this perspective, the loading coefficient matrix H represents the 
importance (weights) of each feature above for a given image. Instead of opti-
mizing the non-convex problem in a batch learning paradigm (i.e., reading all 
images into memory) as opNMF (9), sopNMF subsamples the number of images 
at each iteration, thereby significantly reducing its memory demand by randomly 
drawing data batches Xb ∈ ℝ

d×b
≥0

 of b ≤ n images (b is the batch size; b = 32 
was used in the current analyses); this is done without replacement so that all 
data goes through the model once ( ⌈n∕b⌉ ). In this case, the updating rule can 
be rewritten as

	
[2]

We calculate the loss on the entire dataset at the end of each epoch (i.e., the loss 
is incremental across all batches) with the following expression:

	
[3]

We evaluated the training loss and the sparsity of W at the end of each itera-
tion. Moreover, early stopping was implemented to improve training efficiency 
and alleviate overfitting. We summarize the sopNMF algorithm in SI Appendix, 
Algorithm 1. An empirical comparison between sopNMF and opNMF is detailed 
in SI Appendix, eMethod 1.

We applied sopNMF to the training population (N = 4,000). The component 
matrix W was sparse after the algorithm converged with a pre-defined maximum 
number of epochs (100 by default) with an early stopping criterion. To build the 
MuSIC atlas, we clustered each voxel (row-wise) into one of the r  features/PSCs 
as follows:

	
[4]

where M is a d-dimensional vector and j ∈ {1 … d } . The j-th element of M 
equals k if W j,k is the maximum value of the j-th row. Intuitively, M indicates which 

of the r PSCs each voxel belongs to. We finally projected the vector M ∈ ℝ
d
≥0

 into 
the original image space to visualize each PSC of the MuSIC atlas (Fig. 1). Of note, 
13 PSCs have vanished in this process for C = 1,024: all 0 for these 13 vectors.

Method 2: Study Population. We consolidated a large-scale multimodal con-
sortium (N = 50,699) consisting of imaging, cognition, and genetic data from 
12 studies, 130 sites, and 12 countries. We present the detailed demographic 
information of the population under study in SI Appendix, eTable 1. All individual 
studies were approved by their local corresponding Institutional Review Boards 
(IRB) (SI Appendix, eText 2). This large-scale consortium reflects the diversity of 
MRI scans over different races, disease conditions, and ages over the lifespan. To 
be concise, we defined four populations or datasets per analysis across the paper: 
i) discovery set, ii) replication set, iii) training population, and iv) comparison 
population (refer to SI Appendix, eText 3 for details).

Method 3: Image Processing and Statistical Harmonization. (A): Image 
processing: Images that passed the quality check (SI  Appendix, eMethod 4) 
were first corrected for magnetic field intensity inhomogeneity (53). Voxel-wise 
regional volumetric maps (RAVENS) (33) for each tissue volume were then gen-
erated by using a registration method to spatially align the skull-stripped images 
to a template in MNI-space (54). We applied sopNMF to the RAVENS maps to 
derive MuSIC.

(B): Statistical harmonization of MuSIC PSCs: We applied MuSIC to the entire 
population (N = 50,699) to extract the multi-scale PSCs. Specifically, MuSIC was 
applied to each individual’s RAVENS gray matter map to extract the sum of brain 
volume in each PSC. Subsequently, the PSCs were statistically harmonized by an 
extensively validated approach, i.e., ComBat-GAM (12) (SI Appendix, eMethod 
3) to account for site-related differences in the imaging data. After harmoniza-
tion, the PSCs were normally distributed (skewness = 0.11 ±   0.17, and kurto-
sis = 0.67 ±   0.68) (SI Appendix, eFigure 7 A and B). To alleviate the potential 

‖X−WH‖2
F

subject toH=W
T
X , W ≥0 andWT

W = I

,

W t+1 = W t

(
XbX

T

b
W

)
t(

WW
T
XbX

T

b
W

)
t

.

⌈n∕b⌉�

i=1

���Xb_i−WW
T
Xb_i

���
2

F
.

M j = argmaxk
(
W j,k

)
,
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violation of normal distribution in downstream statistical learning, we quantile-
transformed all PSCs. In agreement with the literature (55, 56), males were found 
to have larger brain volumes than females on average (SI Appendix, eFigure 7C). 
Overall, the Combat-GAM model slightly improved data normality across sites 
(SI Appendix, eFigure 7 E–H). The AAL ROIs underwent the same statistical har-
monization procedure.

Method 4: Genetic Analyses. Genetic analyses were restricted to the discovery 
and replication set from UKBB (Method 2). We processed the array genotyping 
and imputed genetic data (SNPs). The two datasets went through a “best-practice” 
imaging-genetics quality check (QC) protocol (Method 4A) and were restricted 
to participants of European ancestry. This resulted in 18,052 participants and 
8,430,655 SNPs for the discovery set and 15,243 participants and 8,470,709 
SNPs for the replication set. We reperformed the genetic QC and genetic analyses 
for the combined populations for BRIDGEPORT, resulting in 33,541 participants 
and 8,469,833 SNPs. Method 4G details the correction for multiple comparisons 
throughout our analyses.

(A): Genetic data quality check protocol: First, we excluded related individ-
uals (up to second-degree) from the complete UKBB sample (N = 488,377) 
using the KING software for family relationship inference (57). We then removed 
duplicated variants from all 22 autosomal chromosomes. We also excluded indi-
viduals for whom either imaging or genetic data were not available. Individuals 
whose genetically identified sex did not match their self-acknowledged sex were 
removed. Other excluding criteria were i) individuals with more than 3% of miss-
ing genotypes; ii) variants with minor allele frequency (MAF) of less than 1%; iii) 
variants with larger than 3% missing genotyping rate; iv) variants that failed the 
Hardy–Weinberg test at 1 × 10−10. To adjust for population stratification (58), we 
derived the first 40 genetic principle components (PC) using FlashPCA software 
(59). The genetic pipeline was also described elsewhere (60, 61).

(B): Heritability estimates and genome-wide association analysis: We esti-
mated the SNP-based heritability explained by all autosomal genetic variants 
using GCTA-GREML (62). We adjusted for confounders of age (at imaging), age-
squared, sex, age–sex interaction, age-squared-sex interaction, ICV, and the first 
40 genetic principal components (PC), guided by a previous neuroimaging GWAS 
(4). In addition, Elliot et al. (5) investigated more than 200 confounders in another 
study. Therefore, our sensitivity analyses included four additional imaging-related 
covariates (i.e., brain positions and head motion). One-side likelihood ratio tests 
were performed to derive the heritability estimates. In GWAS, we performed a 
linear regression for each PSC and included the same covariates as in the herit-
ability estimates using PLINK (63).

(C): Identification of newly identified genomic loci: Using PLINK, we clumped 
the GWAS summary statistics based on their linkage disequilibrium to identify 
the genomic loci (see SI Appendix, eMethod 5 for the definition of the index, can-
didate, independent significant, lead SNP, and genomic locus). In particular, the 
threshold for significance was set to 5 ×   10−8 (clump-p1) for the index SNPs and 
0.05 (clump-p2) for the candidate SNPs. The threshold for linkage disequilibrium-
based clumping was set to 0.60 (clump-r2) for independent significant SNPs and 
0.10 for lead SNPs. The linkage disequilibrium physical-distance threshold was 
250 kb (clump-kb). Genomic loci consider linkage disequilibrium (within 250 
kb) when interpreting the association results. The GWASRAPIDD (64) package 
(version: 0.99.14) was then used to query the genomic loci for any previously 
reported associations with clinical phenotypes documented in the NHGRI-EBI 
GWAS Catalog (15) (P-value < 1.0 ×   10−5, default inclusion value of GWAS 
Catalog). We defined a genomic locus as newly identified when it was not pres-
ent in GWAS Catalog (query date: April 5th, 2023).

(D): Gene-level associations with MAGMA: We performed gene-level associ-
ation analysis using MAGMA (16). First, gene annotation was performed to map 
the SNPs (reference variant location from Phase 3 of 1,000 Genomes for European 
ancestry) to genes (human genome Build 37) according to their physical posi-
tions. The second step was to perform the gene analysis based on the GWAS 
summary statistics to obtain gene-level P-values between the pairwise 2,003 
PSCs and the 18,097 protein-encoding genes containing valid SNPs.

(E): Hypothesis-free gene set enrichment analysis with MAGMA: Using the 
gene-level association P-values, we performed gene set enrichment analysis 
using MAGMA. Gene sets were obtained from Molecular Signatures Database 
(MsigDB, v7.5.1) (65), including 6,366 curated gene sets and 10,402 Gene 
Ontology (GO) terms. All other parameters were set by default for MAGMA. 

This hypothesis-free analysis resulted in a more stringent correction for multi-
ple comparisons (i.e., by the total number of tested genes and PSCs) than the 
FUMA-prioritized gene set enrichment analysis (see below FUMA Analyses for 
the Illustrations of Specific PSCs).

(F): FUMA analyses for the illustrations of specific PSCs: In SNP2GENE, three 
different methods were used to map the SNPs to genes. First, positional mapping 
maps SNPs to genes if the SNPs are physically located inside a gene (a 10-kb win-
dow by default). Second, expression quantitative trait loci (eQTL) mapping maps 
SNPs to genes showing a significant eQTL association. Last, chromatin interaction 
mapping maps SNPs to genes when there is a significant chromatin interaction 
between the disease-associated regions and nearby or distant genes (24). In 
addition, GENE2FUNC studies the expression of prioritized genes and tests for the 
enrichment of the set of genes in pre-defined pathways. We used the mapped 
genes as prioritized genes. The background genes were specified as all genes in 
FUMA, and all other parameters were set by default. We only reported gene sets 
with adjusted P-value < 0.05.

(G): Correction for multiple comparisons: We practiced a conservative proce-
dure to control for the multiple comparisons. In the case of GWAS, we chose the 
default genome-wide significant threshold (5.0 × 10−8 and 0.05 for all other 
analyses) and independently adjusted for multiple comparisons (Bonferroni 
methods) at each scale by the number of PSCs. We corrected the P-values for 
the number of phenotypes (N = 6) for genetic correlation analyses. We adjusted 
the P-values for the number of PSCs at each scale for heritability estimates. For 
gene analyses, we controlled for both the number of PSCs at each scale and 
the number of genes. We adopted these strategies per analysis to correct the 
multiple comparisons because PSCs of different scales are likely hierarchical and 
correlated—avoiding the potential of “overcorrection.”

(H): Replication analysis for genome-wide association studies: We performed 
GWAS by fitting the same linear regressing models as the discovery set. Also, 
following the same procedure for consistency, we corrected the multiple compar-
isons using the Bonferroni method. We corrected it for the number of genomic 
loci (N = 915) found in the discovery set with a nominal P-value of 0.05, which 
thereby resulted in a stringent test with an equivalent P-value threshold of 3.1 
× 10−5 (i.e., (−log10[P-value] = 4.27). We performed a replication for the 915 
genomic loci, but, in reality, SNPs in linkage disequilibrium with the genomic 
loci are likely highly significant.

Method 5: Pattern Analysis via Machine Learning for Individualized 
Imaging Signatures. SPARE-AD captures the degree of expression of an imaging 
signature of AD, and prior studies have shown its diagnostic and prognostic values 
(32). Here, we extended the concept of the SPARE imaging signature to multiple 
diseases (SPARE-X, X represents disease diagnoses). Following our reproducible 
open-source framework (35), we performed nested cross-validation (SI Appendix, 
eMethod 6) for the machine learning models and derived imaging signatures to 
quantify individualized disease vulnerability.
SPARE indices. MuSIC PSCs were fit into a linear support vector machine (SVM) 
to derive SPARE-AD, MCI, SCZ, DM, HTN, MDD, and ASD. Specifically, the SVM 
aims to classify the patient group (e.g., AD) from the control group and outputs a 
continuous variable (i.e., the SPARE indices), which indicates the proximity of each 
participant to the hyperplane in either the patient or control space. We compared 
the classification performance using different sets of features: i) the single-scale 
PSC from 32 to 1024, ii) the multi-scale PSCs by combining all features (with 
and without feature selections embedded in the CV); iii) the ROIs from the AAL 
atlas; and iv) voxel-wise RAVENS maps. The samples selected for each task are 
presented in SI Appendix, eTable 2.

No statistical methods were used to predetermine the sample size. The experi-
ments were not randomized, and the investigators were not blinded to allocation 
during experiments and outcome assessment.

Data, Materials, and Software Availability. The GWAS summary statistics 
corresponding to this study are publicly available on the BRIDGEPORT web portal 
(https://www.cbica.upenn.edu/bridgeport/) and the MEDICINE web portal (https://
labs.loni.usc.edu/medicine/). The software and resources used in this study are all 
publicly available: sopNMF: https://pypi.org/project/sopnmf/, MuSIC, and sopNMF 
(developed for this study); BRIDGEPORT: https://www.cbica.upenn.edu/bridge-
port/, (developed for this study); MLNI: https://pypi.org/project/mlni/, machine 
learning (developed for this study); MUSE: https://www.med.upenn.edu/sbia/D
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muse.html, image preprocessing; PLINK: https://www.cog-genomics.org/plink/, 
GWAS; GCTA: https://yanglab.westlake.edu.cn/software/gcta/#Overview, heritabil-
ity estimates; LDSC: https://github.com/bulik/ldsc, genetic correlation estimates; 
MAGMA: https://ctg.cncr.nl/software/magma, gene analysis; GWASRAPIDD: 
https://rmagno.eu/gwasrapidd/articles/gwasrapidd.html, GWAS Catalog query; 
and MsigDB: https://www.gsea-msigdb.org/gsea/msigdb/, gene sets database.
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