Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  ODT Projector
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Deep-Learning Projector for Optical Diffraction Tomography

F. Yang, T.-a. Pham, H. Gupta, M. Unser, J. Ma

Optics Express, vol. 28, no. 3, pp. 3905-3921, February 3, 2020.


Optical diffraction tomography is an effective tool to estimate the refractive indices of unknown objects. It proceeds by solving an ill-posed inverse problem for which the wave equation governs the scattering events. The solution has traditionally been derived by the minimization of an objective function in which the data-fidelity term encourages measurement consistency while the regularization term enforces prior constraints. In this work, we propose to train a convolutional neural network (CNN) as the projector in a projected-gradient-descent method. We iteratively produce high-quality estimates and ensure measurement consistency, thus keeping the best of CNN-based and regularization-based worlds. Our experiments on two-dimensional-simulated and real data show an improvement over other conventional or deep-learning-based methods. Furthermore, our trained CNN projector is general enough to accommodate various forward models for the handling of multiple-scattering events.

@ARTICLE(http://bigwww.epfl.ch/publications/yang2001.html,
AUTHOR="Yang, F. and Pham, T.-a. and Gupta, H. and Unser, M. and Ma,
	J.",
TITLE="Deep-Learning Projector for Optical Diffraction Tomography",
JOURNAL="Optics Express",
YEAR="2020",
volume="28",
number="3",
pages="3905--3921",
month="February 3,",
note="")

© 2020 OSA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from OSA. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved