Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Data Coherence
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Extension of Wavelet Compression Algorithms to 3D and 4D Image Data: Exploitation of Data Coherence in Higher Dimensions Allows Very High Compression Ratios

L. Zeng, C. Jansen, M. Unser, P. Hunziker

Proceedings of the SPIE Conference on Mathematical Imaging: Wavelet Applications in Signal and Image Processing IX, San Diego CA, USA, July 29-August 1, 2001, vol. 4478, pp. 427-433.


High resolution multidimensional image data yield huge datasets. For compression and analysis, 2D approaches are often used, neglecting the information coherence in higher dimensions, which can be exploited for improved compression. We designed a wavelet compression algorithm suited for data of arbitrary dimensions, and assessed its ability for compression of 4D medical images. Basically, separable wavelet transforms are done in each dimension, followed by quantization and standard coding. Results were compared with conventional 2D wavelet. We found that in 4D heart images, this algorithm allowed high compression ratios, preserving diagnostically important image features. For similar image quality, compression ratios using the 3D/4D approaches were typically much higher (2-4 times per added dimension) than with the 2D approach. For low-resolution images created with the requirement to keep predefined key diagnostic information (contractile function of the heart), compression ratios up to 2000 could be achieved. Thus, higher-dimensional wavelet compression is feasible, and by exploitation of data coherence in higher image dimensions allows much higher compression than comparable 2D approaches. The proven applicability of this approach to multidimensional medical imaging has important implications especially for the fields of image storage and transmission and, specifically, for the emerging field of telemedicine.

@INPROCEEDINGS(http://bigwww.epfl.ch/publications/zeng0101.html,
AUTHOR="Zeng, L. and Jansen, C. and Unser, M. and Hunziker, P.",
TITLE="Extension of Wavelet Compression Algorithms to {3D} and {4D}
	Image Data: {E}xploitation of Data Coherence in Higher Dimensions
	Allows Very High Compression Ratios",
BOOKTITLE="Proceedings of the {SPIE} Conference on Mathematical
	Imaging: {W}avelet Applications in Signal and Image Processing
	{IX}",
YEAR="2001",
editor="",
volume="4478",
series="",
pages="427--433",
address="San Diego CA, USA",
month="July 29-August 1,",
organization="",
publisher="",
note="")

© 2001 SPIE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from SPIE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
  • Laboratory
  • Research
  • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
  • Teaching
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved