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Abstract. One of the main factors that affect the accuracy of intensity-based 
registration of two-dimensional (2D) X-ray fluoroscopy to three-dimensional 
(3D) CT data is the similarity measure, which is a criterion function that is used 
in the registration procedure for measuring the quality of image match. This pa-
per presents a unifying framework for rationally deriving point similarity meas-
ures based on Markov random field (MRF) modeling of difference images 
which are obtained by comparing the reference fluoroscopic images with their 
associated digitally reconstructed radiographs (DRR’s). The optimal solution is 
defined as the maximum a posterior (MAP) estimate of the MRF. Three novel 
point similarity measures derived from this framework are presented. They are 
evaluated using a phantom and a human cadaveric specimen. Combining any 
one of the newly proposed similarity measures with a previously introduced 
spline-based registration scheme, we develop a fast and accurate registration al-
gorithm. We report their capture ranges, converging speeds, and registration  
accuracies. 

1   Introduction 

One of the main factors that affect the accuracy of intensity-based 2D-3D registration 
is the similarity measure, which is a criterion function that is used in the registration 
procedure for measuring the quality of image match. An extensive study of six simi-
larity measures applied specifically to 2D-3D registration has been performed by 
Penney et al. [1]. The similarity measures considered by the authors were: normalized 
cross-correlation [2], entropy of the difference image [3], pattern intensity [4], mutual 
information [5], gradient correlation [6], and gradient difference [1]. Using the fidu-
cial markers to get the “gold-standard” registration, the authors ranked these measures 
based on their accuracy and robustness. They found that pattern intensity was one of 
the two similarity measures that were able to register accurately and robustly, even 
when soft tissues and interventional instruments were present in the X-ray images. 
Unfortunately, pattern intensity was designed by using some heuristic rules [4]. 
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This work formulates a MRF model on the difference images obtained by compar-
ing the input fluoroscopic images with their associated DRR’s. The optimal solution 
is defined as the MAP estimated of the MRF. By using this unifying MAP-MRF 
framework, we can derive new point similarity measure in a rational way. The opti-
mization of each individual similarity measure derived from this framework leads to 
optimal registration. We point out that two previously published similarity measures, 
i.e., sum-of-squared-difference (SSD) [7] and pattern intensity [4], can be also derived 
from this framework. 

The remainder of this paper is organized as follows. Section 2 briefly introduces 
the 2D-3D registration scheme used in this paper. Section 3 describes the derivation 
of point similarity measures based on MRF modeling of the difference images. Sec-
tion 4 presents the experimental results, followed by conclusions in Section 5. 

2   Spline-Based 2D-3D Registration Scheme 

The 2D-3D registration scheme used in this paper is based on a recently introduced 
spline-based multi-resolution 2D-3D registration scheme [7, 8]. This scheme follows 
the computation framework of intensity-based methods. Given a set of X-ray images 
and a CT volume, it iteratively optimizes the six rigid-body parameters describing the 
orientation and the translation of the patient pose, by generating and comparing float-
ing DRR’s with the reference X-ray images using appropriate similarity measure. The 
differences between this method and other intensity-based methods lie in [7]: 1) a 
cubic-splines data model was used to compute the multi-resolution data pyramids for 
both CT volume and X-ray images, the DRR’s, as well as the gradient and the Hes-
sian of the cost function; 2) a Marquardt-Levenberg non-linear least-squares opti-
mizer was adapted to a multi-resolution context. The registration was performed from 
the coarsest resolution until the finest one. The accuracy of this method depends on 
the chosen similarity measure. Previously, accuracy of approximately 1.4 ±  0.2 mm 
when SSD was used [7] has been reported. 

3   Deriving Point Similarity Measures Based on MRF Modeling of 
     Different Images 

To find an optimal registration transformation we cast the problem into a Bayesian 
framework of MAP-MRF estimate. We thus follow the four steps of the MAP-MRF 
estimate [9]. 

1. Construction of a prior probability distribution )(Tp  for the registration trans-

formation T matching the reference X-ray images to the floating DRR’s. 
2. Formulation of an observation model )|( TDp  that describes the distribution 

of the observed difference images D by comparing the reference X-ray  
images and the floating DRR’s given any particular realization of the prior 
distribution. 
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3. Combination of the prior and the observation model into the posterior distribu-
tion by Bayes theorem 

)()|()|( TpTDpDTp ∝  (1) 

4. Drawing inference based on the posterior distribution. 

3.1   Prior Distribution 

One advantage of formulating 2D-3D registration according to Bayesian framework is 
that we are able to specify a prior distribution for each configuration of registration 
parameter space. In this paper, we don’t take advantage of this property. We treat all 
parameter configurations equally. Due to the Euler angle based parameterization of 
rotation in our approach, )(Tp  are a uniform distribution. But it is possible to use this 

property to favor certain transformations when different parameterization forms such 
as quaternion are used. 

3.2   Observation Model 

Given a realization of the prior distribution, the observation model p(D|T) describes 
the conditional distribution of the observed difference images D. By specifying an 
observation model we may favor a transformation that establishes matching between 
regions of similar properties. By modeling the difference image D as a MRF with 
respect to the rth order neighborhood system }{ ,

r
jiNN =  we can derive the energy 

function for the observation model as: 

]),(
)(

1
)1()([)|(

1

,

, ),(
,,

,

,

,
,

,
''

''∑ ∑ ∑∑
= ∈

−+=
Q

q

JI

ji Nji
jijir

ji

JI

ji
ji

r
ji

ddV
Ncard

dVTDE αα  (2) 

where Q  is the number of images and JI ×  is the size of each image. The first term 

is the potential function for single-pixel cliques and the second term is the potential 
function for all other cliques. ]:[ 10∈α  weights the influence of these two terms. 

)( ,
r
jiNcard  means to compute the number of pixels in neighborhood r

jiN , . 

The selection of the potential functions in Eq. (2) is a critical issue in MRF model-
ing [9]. As pointed out below, its selection decides the form of similarity measure. 

The computation of the difference images also plays an important role in the  
present framework. In [4], an adjustable scaling parameter was used to build the dif-
ference images. To eliminate this parameter, Jonić et al. [7] tries to normalize the 
intensity range of the input reference fluoroscopic images and that of the correspond-
ing DRR’s by removing their mean and then dividing by their standard deviation. In 
this paper, we use a similar method. But unlike in [7], where the mean and the stan-
dard deviation were computed from the complete region of interest (ROI), we com-
pute them only using those pixels in the neighborhood r

jiN , . 
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3.3   MAP Estimate 

The posterior conditional probability distribution is given by: 

))|(exp()|( TDEDTp −∝  (3) 

In search for the MAP estimate: 

)|(maxarg DTpT T=
)

 (4) 

To illustrate how to derive similarity measures using the present framework, two 
examples of previously published similarity measures are given as follows. 

Sum-of-Squared-Difference (SSD): It can be derived from Eq. (2) by specifying 
1=α  and 2

jiji ddV ,, )( = . 

Pattern Intensity: the pattern intensity proposed in [4] is written in the form: 
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where r  and σ  are two parameters to be experimentally determined. r
jiN ,  is a 

neighborhood with radius r . It can be derived from the present framework by speci-
fying 0=α  and using following pairwise clique potential function: 
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where ',' ji
d  is a pixel in the neighborhood r

jiN , . 

3.4   Deriving New Point Similarity Measures 

More generally, by choosing different neighborhood system and by specifying differ-
ent clique potential functions that incorporates different a priori constraints, we can 
derive different new similarity measures. 

Isotropic rth order neighborhood system and pairwise potential function with 1st 
order smoothness constraint (INrS1): It is defined using following equation: 
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It is actually a combination of SSD and a modified form of pattern intensity [10]. 
Following the suggestion in [4], we also choose r=3 pixels. From now on, we call this 
similarity measure IN3S1. 
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Two anisotropic similarity measures can be derived using following equation: 
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∂=
∂
∂=  is the first derivatives of the dif-

ference image D along X and Y directions, respectively. 

Anisotropic 4-neighborhood system and potential functions with first order 
smoothness constraint (AN4S1): It computes the first derivative in Eq. (8) using  
4-neightborhood system with following convolution masks: 

• [ ]101−  for the determination of xjid ),,(  and 

• [ ]T101−  for the determination of yjid ),,(  

Anisotropic 8-neighborhood system and potential functions with first order 
smoothness constraint (AN8S1): It also computes the first derivative in Eq. (8) using 
4-neightborhood system but with following convolution masks: 
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4   Experiments 

A phantom and a human cadaveric spine specimen together with their ground truths 
were used in our experiments. Both phantom and cadaveric specimen were scanned 
by a GE LightSpeed Ultra CT scanner (GE Healthcare, Chalfont St. Giles, United 
Kingdom) with same intra-slice solution (0.36 mm x 0.36 mm) but with different 
inter-slice thickness, 1.25 mm for the phantom and 2.5 mm for the cadaveric speci-
men, which resulted in volume dataset of size 512x512x93 volxels for phantom and 
512x512x72 for the cadaveric specimen, respectively. The 2D projection images of 
both phantom and cadaveric specimen were acquired from a Siemens ISO-C C-arm 
(Siemens AG, Erlangen, Germany). They are calibrated and undistorted with custom-
made software with high accuracy. The phantom was custom-made to simulate a good 
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Fig. 1. Behavior of different similarity measures. Cut through the minimum of different similar-
ity measures on the phantom data (the 1st and 2nd rows) as well as on the cadaveric spine speci-
men (the 3rd and 4th rows). The ordinate shows the value of different similarity measures (they 
are normalized to the range [0.0, 1.0]), which are given as functions of each rigid transforma-
tion parameter in the range of [-15o, 15o] or [-15 mm, 15 mm] away from the its ground truth 
((1) 1st column of the 1st and 3rd rows: X rotation; (2) 2nd column of the 1st and 3rd rows: Y 
rotation; (3) 3rd column of the 1st and 3rd rows: Z rotation; (4) 1st column of the 2nd and 4th rows: 
X translation; (5) 2nd column of the 2nd and 4th rows: Y translation; (6) 3rd column of the 2nd and 
4th rows: Z translation). Zero in each abscissa means the ground truth for that individual pa-
rameter, obtained by paired point matching based on fiducial markers. 

condition. In contrast, projections of interventional instruments were present in the X-
ray images of the cadaveric specimen to simulate a practical situation in image-guided 
therapy. 

The ground truths were obtained by implanting fiducial markers. Both phantom 
and cadaveric specimen were equipped with infrared light emitting diodes (LEDs) 
markers to establish a patient coordinate system (P-COS) and was tracked using an 
optoelectronic position sensor (OptoTrak 3020, Northern Digital Inc., Waterloo, Can-
ada). The actual locations of fiducial markers were digitized in P-COS using an opto-
electronically tracked pointer and were matched to the corresponding points in CT  
volume dataset. The ground truths were then obtained using singular value decompo-
sition with an accuracy of 0.52 mm for phantom and 0.65 mm for cadaver,  
respectively. 
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For all three newly derived similarity measures, the parameter α  was chosen as 
0.5. Each time, two nearly orthogonal C-arm images from the corresponding dataset 
were used for the experiments described below. 

The first experiment was designed to compare the behaviors of the newly derived 
similarity measures to those of the published similarity measures such as SSD and 
mutual information. Though mutual information was ranked as least accurate in [1], 
other group [11, 12] later found that it performed reasonably well. The results were 
given in Figure 1. It was found that all similarity measures had similar behavior when 
tested on the phantom data but different behavior when tested on the cadaveric data. 
Those similarity measures derived from the present MAP-MRF framework showed a 
superior behavior compared to other two well-known similarity measures. More spe-
cially, the curves for the newly derived similarity measures have clear minima and are 
smoother, which is an important property to take the advantage of our 2D-3D registra-
tion scheme, which uses a gradient-based optimization technique. It is also evident 
that the behavior of mutual information is better than that of SSD. 

 
 

Fig. 2. Experimental results of capture ranges (left) and converging steps (right) 

Combining any one of the similarity measures with the 2D-3D registration scheme 
described in Section 2, we developed a 2D-3D registration algorithm. The second 
experiment was designed to evaluate their capture ranges, converging steps, and regis-
tration accuracies of these registration algorithms. Based on the investigation results 
obtained in the first experiment, we only performed this experiment on the human 
cadaveric specimen dataset to compare the three newly derived similarity measures. 
For this purpose, we perturbed the ground truth transformation by randomly varying 
each registration parameter in the range of [-2o, 2o] or [-2mm, 2mm] to get 100 posi-
tions, and then another 100 positions in the range of [-4o, 4o] or [-4mm, 4mm], and so 
on until the final range of [-12o, 12o] or [-12mm, 12mm]. We then performed our 
registrations and counted how many times they converged for each range (when the 
target registration error (TRE) measured on those fiducial markers was less than  
1.5 mm). The capture range was defined when there was at least 95% successful 
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Table 1. Results of registration accuracies 

 

rate. The experimental results on capture ranges and converging steps are given in 
Figure 2. The results on registration accuracies are shown in Table 1. It was found 
that IN3S1 had larger capture range than other two similarity measures but it was also 
less accurate and required more steps to be converged. 

5   Conclusions 

In this paper, we introduced a unifying MAP-MRF framework to derive novel point 
similarity measures for 2D-3D registration of X-ray fluoroscopy to CT images. The 
derived novel point similarity measures had been evaluated using phantom and ca-
daver and the results showed that they provided satisfactory 2D-3D registration accu-
racy, even when interventional instruments were present. 
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