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PREFACE

The purpose of these three studies is an inquiry into the essence of the “information”
conveyed by channels of communication, and the application of the results of this inquiry
to the practical probiem of optimum utilization of frequency bands.

In Part 1, a new method of analysing signals is presented in which time and frequency
play symmetrical parts, and which contains *“time analysis™ and “frequency analysis™ as
special cases. 1t is shown that the information conveyed by a frequency band in a given
time-interval can be analysed in various ways into the same number of elementary “quanta
of information,” each quantum conveying one numerical datum.

In Part 2, this method is applied to the analysis of hearing sensations. It is shown
on the basis of existing experimental material that in the band between 60 and 1 000 ¢fs
the human ear can discriminate very mearly every second datum of information, and
that this efficiency of nearly 50% is independent of the duration of the signals in a remark-
ably wide interval. This fact, which cannot be explained by any mechanism in the inner
ear, suggests a new phenomenon in nerve conduction. At frequencies above 1000c/s
the efficiency of discrimination falls off sharply, proving that sound reproductions which
are far from faithful may be perceived by the ear as perfect, and that “condensed’” methods
of transmission and reproduction with improved waveband economy are possible in
principle.

Tn Part 3, suggestions are discussed for compressed transrnission and reproduction of
speech or music, and the first experimental results obtained with one of these methods

are described.

Part 1. THE ANALYSIS OF INFORMATION

SUMMARY

Hitherto communication theory was based on two alternative
methods of signal analysis. One is the description of the signal as a
fanction of time; the other is Fourier anatysis. Bothare idealizations,
& the first method operates with sharply defined instants of time,
the second with infinite wave-trains of rigorously defined frequencies.
But our everyday experiences—especially our auditory sensations—
insist on a description in terms of both time and frequency. In the
present paper this point of view is developed in quantitative language.
Signals are represented in two dimensions, with time and frequency
as co-ordinates. Such two-dimensional representations can be called
“informatjon diagrams,” as areas in them are proportional to the
number of independent data which they can convey. This is a con-
sequence of the fact that the frequency of a signal which is not of
infinite duration can be defined only with a certain inaccuracy, which
is inversely proportional to the duration, and vice versa. This
“uncertainty relation” suggests a new method of description, inter-
mediate between the two extremes of time analysis and spectral
analysis. There are certain “‘clementary signals™ which occupy the
smallest possible area in the information diagram. They are harmonic
oscillations modulated by a ‘“‘probability pulse.” Fach elementary
signal can be considered as conveying exactly one datum, or one
“quantum of information.” Any signal can be expanded in terms
of these by a process which includes time analysis and Fourier analysis
as extreme cases.

These new methods of analysis, which involve some of the mathe-
matical apparatus of quantum theory, are illustrated by application
to some problems of transmission theory, such as direct generation
of single sidebands, signals transmitted in minimum time through
limited frequency channels, frequency modulation and time-division
multiplex telephony.

* Radio Section paper.
¥ British Thomson-Houston Co., Ltd., Research Laboratory.

(1) INTRODUCTION

The purpose of this study is to present a method, with some
new features, for the analysis of information and its transmission
by speech, telegraphy, telephony, radio or television. While
this first part deals mainly with the fundamentals, it will be
followed by applications to practical problems, in particular to
the problem of the best utilization of frequency channels.

The principle that the transmission of a certain amount of
information per unit time requires a certain minimum wave-
band width dawned gradually upon communication engineers
during the third decade of this century. Similarly, as the prin-
ciple of conservation of energy emerged from the slowly hardening
conviction of the impossibility of a perpetuinm mobile, this funda-
mental principle of communication engineering arose from the
refutation of ingenious attempts to break the as yet unformu-
lated law. When in 1922 John Carson!! disproved the claim
that frequency modulation could economize some of the band-
width required by amplitude-modulation methods, he added
that all such schemes “are believed to involve a fundamental
fallacy,””> This conviction was soon cast into a more solid shape
when, in 1924, Nyquist!2 and Kiipfmiiller!? independently
discovered an important special form of the principle, by proving
that the number of telegraph signals which can be transmitted
over any line is directly proportional to its waveband width.
In 1928 Hartley!4 generalized this and other results, partly by
inductive reasoning, and concluded that “the total amount of
information which may be transmitted . . . is proportional to
the product of frequency range which is transmitted and the
time which is available for the transmission.”

Even before it was announced in its general form, an applica-
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tion was made of the new principle, which remains to this day
probably its most important practical achievement. In 1927,
Gray, Horton and Mathes!5 gave the first full theoretical dis-
cussion of the influence of waveband restriction on the quality
of television pictures, and were able to fix the minimum wave-
band requirements in advance, long before the first high-definition
system was realized. In fact, in this as in later discussions of
the problem, the special Nyquist—Kiipfmiiller result appears to
have been used, rather than Hartley’s general but somewhat
vague formulation.

The general principle was immediately accepted and recognized
as a fundamental law of communication theory, as may be seen
from its discussion by Liischen!-6 in 1932 before this Institution.
Yet it appears that hitherto the mathematical basis of the prin-
ciple has not been clearly recognized. Nor have certain practical
conclusions been drawn, which are suggested by a more rigorous
formulation.

(2) TRANSMISSION OF DATA

Let us imagine that the message to be transmitted is given in
the form of a time function s(¢), where s stands for “signal.”
Unless specially stated, s will be assumed to be of the nature
of a voltage, current, field strength, air pressure, or any other
“linear”* quantity, so that power and energy are proportional
to its square. We assume that the function s(7) is given in some
time interval £, — t; = 7, as illustrated in Fig. 1.1. Evidently
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Fig. 1.1.—Signal as a function of time.

this message contains an infinity of data. We can divide 7 into,
say, N sub-intervals, and define, for instance, the average ordinate
in each sub-interval as a *“‘datum.” If there is no limit to the
sub-division, there is no limit to the number of data which could
be transmitted in an absolutely fuithful reproduction.

As this is impossible, let us see whether it is possible to transmit
faithfully at least a finite number N of data. Evidently there is
an infinite number of possibilities for specifying the curve s(r)
in the interval T approximately by N data. Without knowing
the specific purpose of the transmission it is impossible to decide
which is the most economical system of selection and specifica-
tion. Yet, certain methods will recommend themselves by reason
of their analytical simplicity. One of these, division into equal
sub-intervals, has been already mentioned. Another method is
to replace the curve s(¢r) in the interval 7 by a polynomial of
order N, to fit it as closely as possible to s(f) by the method of
least squares, and to take the coefficients of the polynomial as
data. It is known that this method is equivalent to specifying
the polynomial in such a way that its first N “moments”’ M,
shall be equal to those of s(z):—

M, = fsdt M, = Jtsdt M, = Jtzsdt oMy = Jr”*lsdt
0 0 0 0

Instead of the coefficients of the polynomial, we can also con-
sider these moments as the specified data.

A method closely related to this is the following. Expang
5(2), instead of in powers of time, in terms of a set of N fungc.
tions ¢,(7), orthogonal in the interval 0 < ¢ < 7, and consider
as data the N coefficients of expansion. It is known that thijs
is equivalent to fitting the expansion to 5(r) by the method of
least squares.* How close the fit will be, and how well jt will
suit the practical purpose, depends on the set of functiong
selected.

One class of orthogonal functions, the simple harmonic func-
tions sine and cosine, have always played a preferred part ip
communication theory. It is shown in Appendix 9.1 that
there are good reasons for this preference other than their
elementary character. Let us now develop the curve s(#) in the
interval 7 into a Fourier series. This gives an infinite sequence
of spectral lines, as shown in Fig. 1.2, starting with zero fre-
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Fig. 1.2.—Fourier spectrum of signal in an interval .

quency, all equally spaced by a frequency 1/r. Two data are
associated with each frequency, the coefficients of the sine and
cosine terms in the expansion. In a frequency range (s— 1)
there are therefore (f, — f;) lines, representing 2( fo—for
data, that is exactly rwo data per umit time and unmit frequency
range. : )

This, in fact, proves the fundamental principle of communica-
tion. In whatever ways we select N data to specify the signal
in the interval T, we cannot transmit more than a number
2(f5 — fi)7 of these data, or of their independent combinations
by means of the 2(f, — f,)7 independent Fourier coefficients.

In spite of the extreme simplicity of this proof, it leaves a
feeling of dissatisfaction. Though the proof shows clearly that
the principle in question is based on a simple mathematical
identity, it does not reveal this identity in a tangible form.
Besides it leaves some questions unanswered: What are Fhe
effects of a physical filter? How far are we allowed to sub-divide
the waveband or the time interval? What modifications “{Olﬂd
arise by departing from the rigid prescription of absolute inde-
pendence of the data and allowing a limited amount of mutual
interference? It therefore appears worth while to approach the
problem afresh in another way, which will take considerably
more space, but which, in addition to physical insight, gives an
answer to the questions which have been left open.

(2.1) Time and Frequency

The greatest part of the theory of communication has _been
built up on the basis of Fourier’s reciprocal integral relationst

(.1

o

5(r) = j ;( Dez=ifdf S(f) = J s(tye—2=iftdy

—

5
* Cf.e.g. CHURCHILL, RUEL V.: “Fourier Series and Boundary Value Problemz
(McGraw Hill, 1941), p. 40. This book contains an introduction to the theory
orthogonal functions. e
t The notations used will follow in the main those of Campbell and Foster.'*
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where s(?) and S(f) are a pair of Fourier transforms. We will
efer to S(f) also as the “‘spectrum’ of s(2).

Though mathematically this theorem is beyond reproach, even
aperts could not at times conceal an uneasy feeling when it
ame to the physical interpretation of results obtained by the
fourier method. After having for the first time obtained the
spectrum of a frequency-modulated sine wave, Carson wrote:!-1
“The foregong solutions, though unquestionably mathematically
(orrect, are somewhat difficult to reconcile with our physical
mtuitions, and our physical concepts of such ‘variable-fre-
quency’ mechanisms as, for example, the siren.”

The rteason is that the Fourier-integral method considers
phenomena in an infinite interval, sub specie aeternitatis, and
this is very far from our everyday point of view. Fourier’s
theorem makes of description in time and, description by the
spectrum, two mutually exclusive methods. If the term “‘fre-
quency”” is used in the strict mathematical sense which applies
only to infinite wave-trains, a “changing frequency”’ becomes a
contradiction in terms, as it is a statement involving borh time
and frequency.*

The terminology of physics has never completely adapted itself
to this rigorous mathematical definition of “frequency.” In
optics, in radio engineering and in acoustics the word has retained
much of its everyday meaning, which is in better agreement with
what Carson called “‘our physical intuitions.”” For instance,
speech and music have for us a definite “time pattern,”” as well
as a frequency pattern. It is possible to leave the time pattern
unchanged, and double what we generally call “frequencies’’ by
playing a musical piece on the piano an octave higher, or con-
versely it can be played in the same key, but in different time.
Evidently both views have their limitations, and they are com-
plementary rather than mutually exclusive. But it appears that
hitherto the fixing of the limit was largely left to common sense.
It is one of the main objects of this paper to show that there
are also adequate mathematical methods available for this
purpose.

Let us now tentatively adopt the view that both time and
frequency are legitimate references for describing a signal, and
illustrate this, as in Fig. 1.3. by taking them as orthogonal co-
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Fig. 1.3.—Unit impulse (delta function) and infinite sine wave in
time/ffrequency diagram.

ordinates. In this diagram a harmonic oscillation is represented
by a vertical line. Its frequency is exactly defined, while its
epoch is entirely undefined. A sudden surge or “delta function”’{
(also called “unit impulse function’”), on the other hand, has a
sharply defined epoch, but its energy is uniformly distributed
over the whole frequency spectrum. This signal is therefore

* Carson proposed the concept of a “generalized frequency” in 1922, and in 1937
elaborated it further with T. C. Fry under the name of ‘“‘instantaneous frequency”
(Ref. No. 1.8). Thisisa useful notion for slowly-varying frequencies, but not sufficient
to cover all cases in which physical feeling and the Fourier integral theorem are
at variance.

+ Campbell and Foster call this an &, function, but the name “delta function™ as
used by Dirac has now wider currency.
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represented by a horizontal line. But how are we to represent
other signals, for instance a sine wave of finite duration?

In order to give this question a precise meaning we must
consider the physical effects which can be produced by the signal.
The physical meaning of the s(f) curve, shown at the left of
Fig. 1.4, is that this is the response of an ideal oscillograph
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Fig. 1.4.—Time/frequency diagram of the response of physical instru-
ments to a finite sine wave.

which has a uniform response over the whole infinite frequency
range. The interpretation of the Fourier spectrum, shown at
the bottom of the same figure, is somewhat less simple. It could
be obtained by an infinite number of heterodyne receivers, each
of which is tuned to a sharp frequency, and connected with an
indicating instrument of infinite time-constant. To simplify
maiters we take instead a bank of reeds, or other resonators,
each tuned to a narrow waveband, with equally spaced resonant
frequencies. It is known that such an instrument gives only an
analysis of the energy spectrum, as it cannot distinguish phases,
but this will be sufficient for the purpose of discussion. Let us
compare this instrument with a real oscillograph, which responds
only to a certain range of frequencies (f, — /). For simplicity
it has been assumed in Fig. 1.4 that the bank of reeds extends
over the same range, and that the time-constant of the reeds is
about equal to the duration of the signal.

We know that any instrument, or combination of instruments,
cannot obtain more than at most 2(f, — f)7 independent data
from the area (f, — f;)7 in the diagram. But instead of rigor-
ously independent data, which can be obtained in general only
by calculation from the instrument readings, it will be more
convenient for the moment to consider “practically” indepen-
dent data, which can be obtained by direct readings. For any
resonator, oscillograph or reed, a damping time can be defined,
after which oscillations have decayed by, say, 10 db. Similarly
one can define a tuning width as, say, the number of cycles off
resonance at which the response falls off by 10db. Tt is well
known that in all types of resonators there is a relation between
these two of the form:

Decay time x Tuning width = Number of the order one.

This means that for every type of resonator a characteristic
rectangle of about unit area can be defined in the timeffrequency
diagram, which corresponds to one “practically” independent
reading of the instrument. In order to obtain their number,
we must divide up the (time X frequency) area into such rect-
angles. This is illustrated in Figs. 1.4(a) and 1.4(b). In the
case of the oscillograph the rectangles are broad horizontally
and narrow vertically; for the tuned reeds the reverse. The
amplitude of the readings is indicated by shading of different
density. Negative amplitudes are indicated by shading of
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opposite inclination. We will return later to the question of a
suitable convention for measuring these amplitudes.*

Without going into details, it is now evident that physical
instruments analyse the time-frequency diagram into rectangles
which have shapes dependent on the nature of the instrument
and areas of the order unity, but not less than one-half. The
number of these rectangles in any region is the number of inde-
pendent data which the instrument can cbtain from the signal,
i.e. proportional to the amount of information. This justifies
calling the diagram from now on the “diagram of information.”

We may now ask what it is that prevents any instrument from
analysing the information area with an accuracy of less than a
half unit. The ultimate reason for this is evident., We have
made of a function of one variable—time or frequency—a func-
tion of two variables—time and frequency. This might be
considered a somewhat artificial process, but it must be remem-
bered that it corresponds very closely to our subjective inter-
pretation of aural sensations. Indeed, Fig. 1.4(h) could be
considered as a rough plan of analysis by the ear; rather rough,
as the ear is too complicated an instrument to be replaced by a
bank of tuned reeds, yet much closer than either the oscillogram
or the Fourier spectrum. But as a result of this doubling of
variables we have the strange feature that, although we can
carry out the analysis with any degree of accuracy in the time
direction or in the frequency direction, we cannot carry it out
simultaneously in both beyond a certain limit. This strange
character is probably the reason why the familiar subjective
pattern of our aural sensations and their mathematical inter-
pretation have hitherto differed so widely. In fact the mathe-
matical apparatus adequate for treating this diagram in a
quantitative way has become available only fairly recently to
physicists, thanks to the development of quantum theory.

The linkage between the uncertainties in the definitions of
“time”” and ‘““frequency’’ has never passed entirely unnoticed by
physicists, It is the key to the problem of the ‘“‘coherence
length’” of wave-trains, which was thoroughly discussed by
Sommerfeld in 1914.1 But these problems came into the focus
of physical interest only with the discovery of wave mechanics,
and especially by the formulation of Heisenberg’s principle of
indeterminacy in 1927. This discovery led to a great simplifica-
tion in the mathematical apparatus of quantum theory, which
was recast in a form of which use will be made in the present
paper.

The essence of this method—due to a considerable part to
W. Paulit—is a re-definition of all observable physical quantities
in such a form that the physical uncertainty relations which
obtain between them appear as direct consequences of a mathe-

matical identity -
AAf~=1 . . . . . . (12

At and Af are here the uncertainties inherent in the definitions
of the epoch ¢ and the frequency f of an oscillation. The
identity (1.2) states that ¢ and f cannot be simultaneously defined
in an exact way, but only with a latitude of the order one in
the product of uncertainties.

Though this interpretation of Heisenberg’s principle is now

* Note added 7th February, 1946. An instrument called the “Sound Spectrograph”
has been developed by the Bell Telephone Laboratories for the recording of sound
patterns in two-dimensional form. The first publications have just appeared:
Porter, R. K.: “Visible Patterns of Sound,” Science, 9th November, 1945, and
““Visible Speech,” Bell Laboratories Record, January 1946,

T SOMMERFELD, A.: Annalen der Physik, 1914, 44, p. 177.

. Another field of classical physics in _which an uncertainty relation is of great
importance is Brownian motion. Cf. FurTH, R.: “On Some Relations between
Classical Statistics and Quantum Mechanics,” Zeitschrift fiir Physik, 1933, 81, p. 143,
and BoULIGAND, G.: “Relations d’Incertitude en Géometrie et en Physique”
(Hermann et Cie, Paris, 1934). .

I PauLy, W.: “Handbuch der Physik,” vol. 24/1, 2nd ed. (Berlin, 1933). A very
lucid exposition of quantum mechanics on these lines is given by ToLmaN, R. C.:
“The Principles of Statistical Mechanics” (Oxford, 1938), pp. 189-276. In Dirac’s
system Pauli’s postulates appear as results, derived from another set of postulates.
Cf. DirAC, P. A. M.: “Quantum Mechanics,”” 2nd ed. (Oxford, 1938), p. 103.

widely known, especiaily thanks to popular expositiong of
quantum theory,* it appears that the identity (1.2) itself has
received less attention than it deserves. Following a Suggestion
by the theoretical physicist A. Landé, in 1931 G. W, Stewart
brought the relation to the notice of acousticians, in a short
notet—to which we shall return in Part 2—but apparently
without much response. In communication theory the intimate
connection of the identity (1.2) with the fundamental principle of
transmission appears to have passed unnoticed.

Perhaps it is not unnecessary to point out that it is not intended
to explain the transmission of information by means of quantum
theory. This could hardly be called an explanation. The fore.
going references are merely an acknowledgment to the theory
which has supplied us with an important part of the mathe-
matical methods.

(3) THE COMPLEX SIGNAL

In order to apply the simple and elegant formalism of quantum
mechanics, it will be convenient first to express the signal
amplitude s(¢) in a somewhat different form.

It has long been recognized that operations with the complex
exponential e/@*—often called cis wr—have distinct advantages
over operations with sine or cosine functions. There are two
ways of introducing the complex exponential. One is to write

cos wt = e/t + e—Jol) sin wi = 21— (eJot — e—joty | (1.3)
J

This means that the harmonic functions are replaced by the
resultant of two complex vectors, rotating in opposite directions.
The other way is to put

cos wt = H(ei*?) sin wt = — H(jelory . . (1.4)

In this method the harmonic functions are replaced by the real
part of a single rotating vector. Both methods have great
advantages against operation with real harmonic functions.
Their relative merits depend on the problem to which they are
applied. In modulation problems, for instance, the advantage
is with the first method. On the other hand, the formalism of
quantum mechanics favours the second method, which we are
now going to follow. This means that we replace a real signal
of the form

s() =acoswt -+ bsinwt . . . . (15)

by a complex time function
B(E) = s(t) + jo(t) = (a — jpyeior . . (1.6)

which is formed by adding to the real signal s(f) an imaginary
signal jo(r). The function o(¢) is formed from s(#) by replacing
cos et by sin wt and sin w? by — cos we. The function o(#) has
a simple significance. It represents the signal in quadrature 10
s(¢) which, added to it, transforms the oscillating into a rotating
vector. If, for instance, s(¢) is applied to two opposite poles 9f
a four-pole armature, o(¢) has.to be applied to the other pair
order to produce a rotating field.

If s(¢) is not a simple harmonic function, the process by which
() has been obtained can be readily generalized. We have
only to express s(#) in the form of a real Fourier integral, replac.e
every cosine in it by e/#?, and every sine by — je/ot, Thls
process becomes very simple if, instead of sine and cosin®
Fourier integrals, the complex (cisoidal) Fourier integrals are

* SCHRODINGER, E.: “Science and the Human Temperament” (Allen and Unwin,
1935), pp. 126-129. LINDEMANN, F. A.: “The Physical Significance of Quantuml
Theory” (Oxford, 1932), pp. 126-127. DarwmN, C. G.: “The New Conceptions of

Matter” (G. Bell and Sons, 1931), pp. 78-102.

+ STEwART, G. W.: Ref. No. 1.9, . . .
A. Landé has made use of acoustical examples to illustrate the uncertainty relatl%ﬂ
in his “Vorlesungen iiber Wellenmechanik” Akademische Verlagsges (Leipzig, 1930)s

pp. 17-20.
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used according to equation (1.1). In this case the passage from
() to () is equivalent to the instruction: Suppress the ampli-
tudes belonging 1o negative frequencies, and multiply the amplitudes
of positive frequencies by rwo. This can be readily understood
by comparing equations (1.3) and (1.4).

Though the Fourier transform of (1) is thus immediately
obtained from the Fourier transform of s(7), to obtain Yil(p) itself
requires an integration. It can be easily verified that the signal
() associated with s(¢) is given by the integral

o=

This is an improper integral, and is to be understood as an
abbreviation of the following limit

e[z,

which is -called “Cauchy’s principal value” of an improper
integral.* To verify equation (1.7) it is sufficient to show that

a.n

it converts cos wt into sin wt and sin w? into — €oOs w/. Con-
versely s(f) can be expressed by o(r) as follows:—
17 dr
s(t) = — —jo(T 1.8).
e (18)
—o0

Associated functions s(z) and o(r) which satisfy the reciprocal
relations (1.7) and (1.8) are known as a pair of “‘Hilbert trans-
forms.”’t

Pairs of signals in quadrature with one another can be generated
by taking an analytical function f(z) of the complex variable
z = x -+ jy, which can be expressed in the form f(z) = u(x.y)
+ ju(x,y). Provided that there are no poles at one side of the
x-axis (and if certain other singularities are excluded), 1u(x,0)
ani v(x,0) will be in quadrature. The function e/Z is an example
which gives u(x,0) = cos x and o(x,0) = sin x. It follows that,
as the real axis is in no way distinguished in the theory of
analytical functions of a complex variable, we can draw any
straight line in the complex plane which leaves all the poles at
one side, and the values of the two conjugate functions along
this line will give a pair of functions in quadrature.

An example of two functions in quadrature is shown in
Fig. 1.5. In spite of their very different forms they contain the

¢ (0)- (t/t)

' —
\/'i

Fig. 1.5.—Example of signals in quadrature.

same spectral components. If these functions were to represent
amplitudes of sound waves, the ear could not distinguish one
from the other.}

A mechanical device for generating the associated signal o(r)
to a given signal s(2) is described in Appendix 9.2, which contains
also a discussion of the problem of single-sideband generation.

* WHITTAKER, E. T., and WatsoN, G. N.: “Modern Analysis,” 4th ed. (Cambridge),

. 75.
P Cf. TitcuMarsH, E. C.: “Introduction to the Theory of Fourier Integrals’™
(Oxford, 1937). . )

+ Provided that Ohm’s law of hearing holds with sufficient accuracy. Such
associated signals could be used for testing the limits of validity of Ohm’s law.

Vor. 93, Parr IIL
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(4) EXACT FORMULATION OF THE UNCERTAINTY
RELATION

By means of the complex signal #f(?) it is now easy to frame
the uncertainty relation in a quantitative manner, using the
formalism of quantum mechanics. In order to emphasize the
analogy, the same symbol J has been chosen for the complex
signal as is used in that theory for the “wave” or “probability”
amplitudes.

(1) is the time description of the signal. We can associate
with this its frequency description by means of its Fourier
transform ¢(f), which will also be called the “spectrum’ of P(0).
The two descriptions are connected by the reciprocal Fourier
relations

Jo) — qu(f)ez“ff'df . 1.9

-]

Hf) = J Jlnye—Triftdt . (1.10)

— 0

In order to emphasize the symmetry, the first integral has been
also written with limits — oo and oo, although we have specified
J(#) in such a way that #(f) = 0 for negative frequencies ; hence
we could have taken zero as the lower limit. As in the following
all integrals will be taken in the limits — oo t0 0, the limits
will not be indicated in the formulae.

In Section 1 several methods have been discussed for specifying
a signal by an infinite set of denumerable (countable) data. One
of these was specification by moments, M, M, ... This
method, with some modifications, will be the best suited for
quantitative discussion. The first modification is that it will be
more convenient to introduce instead of s(2) the following
“weight function” :—

O = [sO] + [6OF (1.11)

The asterisk denotes” the conjugate complex value. The new
weight function is therefore the square of the absolute value
of . This can be considered as the “power’” of the signal, and
will be referred to by this name in what follows. A second
convenient modification is that, instead of with the moments
themselves, we shall operate with their values divided by M,
i.e. with the following quotients:—

S fregdr g
i [ A 7
These are the mean values of the “epoch™ ¢ of the signal of
orders 1,2 . . . n ... The factor # has been placed between
the two amplitude factors to emphasize the symmetry of the
formulas with later ones. By a theorem of Stieltjes, if all mean
values are known, the weight function x/;*(/; = i¢|2 is also deter-
mined, apart from a constant factor. The signal i itself is
determined only as regards absolute value; its phase remains
arbitrary. This makes the method particularly suitable, for
instance, for acoustical problems. In others, where the phase
is observable, it will not be difficult to supplement the specifica-
tion, as will be shown later.
Similarly we define mean
follows:—

PSR L SETYg JOT
Jp*édf J¢*pdf [¢*df

It now becomes evident why we had to introduce a complex
signal in the previous Section. If we had operated with the real
signal s(r) instead, the weight function would have been even,

and the mean frequency f always zero. This is one of the
27

(112)

frequencies f* of the signal as

(1.13)
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points on which physical feeling and the usual Fourier methods
are not in perfect agreement. But we could eliminate the
negative frequencies, only at the price of introducing a complex
signal.

As by equations (1.9) and (1.10), ¢ and ¢ mutually determine
one another, it must be possible to express the mean frequencies
by ¢, and, conversely, the mean epochs by ¢. This can be done
indeed very simply by means of the following elegant reciprocal

relations:—
[pipdt = [d*daf . (1.14)
s = (5) ng*j; di (1.15)
— 1\ dn
[repdt = (ﬁ) J‘QS*Wd)df . (1.16)

"The first of these, (1.14), is well known as the “Fourier energy
theorem” (Rayleigh, 1889). The other relations can be derived
from the identityt

SO (Odt = [$,(F)bo(— FHdf . (1.17)

by partial integration, assuming that i, ¢ and all their deriva-
tives vanish at infinity.

These very useful reciprocal relations can be summed up in
the following simple instructions. When it is desired to express
one of the mean values (1.12) by integrals over frequency,

1 d
27j df.
This can be called “translation from time language into fre-
quency language.’’ Conversely, when doing the inverse trans-
lation, replace ¢ by aﬁ and the frequency f by the operator

1
2mj dr
quantum mechanics: Replace in classical equations the momen-

replace i by ¢, and the quantity t by the operator —

This corresponds to the somewhat mysterious rule of

-b—, where x is the co-ordinate
27j dx

conjugate to the momentum p,. Actually it is no more mysterious
than Heaviside’s instruction: “Replace the operator d/dt by p,”
which has long been familiar to electrical engineers.

Applying the rule

tum p,_ by the operator

- dar
J L dt )

. 2mj [t
to a simple cisoidal function = cis 2mfy, we obtain the
value f, for the mean frequency £, and similarly f» = f5. The
mean epochs i, on the other hand, are zero for odd powers, and
infinite for even powers » > 1. The cisoidal function is to be
considered as a limiting case, as the theory is correctly applicable
only to signals of finite duration, and with frequency spectra
which do not extend to infinity, a condition which is fulfilled
by all real, physical signals.

These definitions and rules enable us to formulate the un-
certainty relation quantitatively. Let us consider a finite signal,
such as is shown, for example, in Fig. 1.6, Let us first fix the
mean epoch and the mean frequency of the signal, by means
of equations (1.12) and (1.13) or (1.18). These, however, do
not count as data, as in a continuous transmission there will
be some signal strength at any instant, and at any frequency.
We consider 7 and f as references, not as data. The first two
data will be therefore determined by the mean-square values of
epoch and frequency, i.e.

2 — [ip*inpat
Jip*ipar

t Cf. CaMPBELL and FOSTER: Reference 1.7, p. 39.°

(1.18)

(1.19)
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(1.20)

The second of these has been first translated into ‘“‘time lan-
guage,”’ as explained, and transformed by partial integration to
put its essentially positive character into evidence.

It may be noted that 72 and f2, and in general all mean values
of even order, remain unaltered if the real signal s(z) or its
associate, o(f), is substituted in the place of () = s(t) + jo(r).
Hence in the following we could again use the real instead of
the complex signal, but s will be retained in order to simplify
some of the analytical expressions and to emphasize the similarity
with the formulas of quantum mechanics.

We now define what will be called “the effective duration™ Ar
and the “effective frequency width’® Af of a signal by the
following equations

At = [2a( — 2] (1.21)
Af =[220F—fPF . . . . (12

In words, the effective duration is defined as 1/ (27) times the
r.m.s. deviation of the signal from the mean epoch 7, and the
effective frequency width similarly as +/(27) times the r.m.s.
deviation from £ The choice of the numerical factor v/ (27)-
will be justified later.
Using the identities
G- R—@ T fR=[1—OP
At and Af can be expressed by means of (1.19) and (1.20).
The expressions are greatly simplified if the origin of the time
scale is shifted to 7, and the origin of the frequency scale to £
Both transformations are effected by introducing a new time
scale
T=1t—1 .

(1.23)
and a new signal amplitude

Y(r) = f(e—2mif

Expressing ¢ and ¢ by the new quantities 7 and ¥, it is found
that, apart from a numerical factor 2=, (A#)? and (A f)? assume
the same form as equations (1.19) and (1.20) for 72 and f2
Multiplying the two equations we obtain

(1.24)

¥+ d¥
P2y iy~
(SR =1 L ’ dTJ ar_ar’ . (129)
4 [[F*Far]

But, by a mathematical identity, a form of the “Schwarz
inequality’’ due to Weyl and Pauli, the expression in brackets
is always larger than unity for any function WY for which 'the
integrals exist. We obtain, therefore, the uncertainty relation

in the rigorous form
AAf =% (1.26)

This is the mathematical identity which is at the root of the
fundamental principle of communication. We see that the
r.m.s. duration of a signal, and its r.m.s. frequency-width define
a minimum area in the information diagram. How large w¢€
assume this minimum area depends on the convention for the
numerical factor. By choosing it as +/(27) = 2-506 we have
made the number of elementary areas in any large rectangular

+ WEYL, H.: “The Theory of Groups and Quantum Mechanics’ (Methuen, Lopdong
1931), pp. 77 and 393. Cf. also Torman, R. C.: loc. cit., p. 235, and Appendix 9.
of this paper.
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region of the information diagram equal to the number of
independent data which that region can transmit, according to
the result obtained in Section 1.

Relation (1.26) is symmetrical in time and frequency, and it
suggests that a new representation of signals might be found in
which ¢ and f played interchangeable parts. Moreover, it
suggests that it might be possible to give a more concrete inter-
pretation to the information diagram by - dividing it up into
sccells” of size one half, and associating each cell with an
“‘elementary signal® which transmitted exactly one datum of
information. This programme will be carried out in the next
Section.

(5) THE ELEMENTARY SIGNAL

The mathematical developments up to this point have run
rather closely on the lines of quantum mechanics. In fact our
results could have been formally obtained by replacing a co-
ordinate x by z, the momentum p by f, and Planck’s constant h
by unity. But now the ways part, as questions arise in the
theory of information which are rather different from those
which quantum theory sets out to answer.

The first problem arises directly from the inequality (1.26).
What is the shape of the signal for which the product ArAf
actually assumes the smallest possible value, i.e. for which the
inequality turns into an equality?

The derivation of this signal form is contained in Appendix 9.3;
only the result will be given here, which is very simple. The
signal which occupies the minimum area AtAf = 1 is the modu-
lation product of a harmonic oscillation of any frequency with a
pulse of the form of a probability fimction. In complex form

i) = e—a2t—10)% cis Qrrfot + @) (1.27)
o, Iy fo and ¢ are constants, which can be interpreted as the
“sharpness” of the pulse, the epoch of its peak, and the fre-
quency and phase constant of the modulating oscillation. The
constant o is connected with Az and Af by the relations

m\ 1 1
Ar= \/ (s & -var
As might be expected from the symmetrical form of the con-

dition from which it has been derived, the spectrum is of the
same analytical form

w2

$(f) = =G UV cis [ 2mi(f —fp) + $] - (28)
The envelopes of both the signal and its spectrum, or their
absolute values, have the shape of probability curves, as illus-
trated in Fig. 1.6, Their sharpnesses are reciprocal.

Because of its self-reciprocal character, the probability signal
has always played an important part in the theory of Fourier
transforms. In three recent papers, Roberts and Simmonds have
called attention to some of its analytical advantages.1-11: 1112, 1.13
But its minimum property does not appear to have been recog-
nized. It is this property which makes the modulated proba-
bility pulse the natural basis on which to build up an analysis
of signals in which both time and frequency are recognized as
references.

It may be proposed, therefore, to call a pulse according to
equation (1.27) an elementary signal. In the information
diagram it may be represented by a rectangle with sides Ar
and Af, and area one-half, centring on the point (oo fo)- It
will be shown below that any signal can be expanded into
elementary signals in such a way that their representative rect-
angles cover the whole time-frequency area, as indicated in
Fig. 1.7. Their amplitudes can be indicated by a number
written into the rectangle, or by shading. Each of these areas,
with its associated datum, represents, as it were, one elementary
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Fig. 1.6.—FEnvelops of the elementary signal.
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Fig. 1.7.—Representation of signal by logons.

quantum of information, and it is proposed to call it a logon.
Expansion into elementary signals is a process of which Fourier
analysis and time description are special cases. The first is
obtained at o = 0, in which case the elementary signal becomes
a sine wave of infinite length; the second at o —» co, when it
passes into a “‘delta function.”

It will be convenient to explain the expansion into elementary
signals in two steps. The first step leads to clementary areas
of size unity, with two associated data, but it is simpler and
more symmetrical than the second step, which takes us to the
limit of sub-division.

This first step corresponds to division of the information area
by a network of lines with distances Ar and 1/Ar respectively,
as illustrated in Fig. 1.8.* The elementary areas have suffixes »

n+l Chat k-l | Cnel ke Cp 4l kel
f I €y k-1 ook o k4! '77
n-l Att G- k1 Ca- k Ca-t, k41
k-1 & k+1
—k
—f
Fig. 1.8.—Representation of 'signa] by a matrix of complex

: amplitudes.

* For perfect symmetry the spacings in the network ought to have been taken as
(v2)Atand 1f{(v/2)A1 = (v 2)Af respectively. -
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in the time direction, and k in the frequency direction. The
centre lines (horizontally) may be at ¢, = n At, assuming for
convenience that we measure time from the ‘‘zero”-th of these
lines: The expansion is given by the following formula

oc o0 _ A 2 '
N OE Zn Zk €, €Xp — Tr(tT(AnT);l cis 2mkt{Ar)

(1.29)
The matrix of the complex coefficienis c,, represents the signal
in a symmetrical way, as it is easy to see that if the expansion
exists we arrive—apart from a constant factor—at the same
coefficients if we expand ¢(f) instead of ¢(z).

As the elementary signals in (1.29) are not orthogonal, the
coefficients ¢, are best obtained by successive approximations.
In the first approximation we consider each horizontal strip
with suffix » by itself, and expand the function {(#) as if the
other strips did not exist, in the interval (¢, — 3A?) to (¢, + 1A,
by putting

(r— nAn?

(t) exp W—T(—A~t)2— =

Zk €,y Cis Qwkt/AD
0

In this formula the exponential function, which is independent
of k, has been brought over to the left. We have now a
known function on the left, and a Fourier series on the right,
which by known methods gives immediately the first approxima-
tion for the coefficients ¢,,. This represents (1) correctly in
the intervals for which the series are valid, but not outside them.
If the first approximations are added up with summation
indices », there will be a certain error due to their overlap.
A second approximation can be obtained by subtracting this
error from (2) in eqn. (1.29) and repeating the procedure. It
can be expected to converge rapidly, as the exponential factor
decays so fast that only neighbouring strips » influence each
other perceptibly.

This expansion gives ultimately one complex number ¢, for
every two elementary areas of size onme-half. The real and
imaginary parts can be interpreted as giving the amplitudes of
the following two real elementary signals

s )
s(1)

where o2 = 3m/(An?2. These can be called the ‘“‘cosine-type”
and “‘sine-type’’ elementary signals. They are illustrated in
Fig. 1.9. 'We can use them to obtain a real expansion, allocating

= exp — a¥(t — 12 > 2mfot = 1o) (1.30)

Sine type

Fig. 1.9.—Real parts of elementary signal.

one datum to every cell of one-half area. But it may be noted
that this will have to be necessarily a more special and less sym-
metrical expansion than the previous one, as the transform of a
cosine-type elementary signal, for example, will not in general be

of the same type. As always in communication theory, g
description by complex numbers is formally simpler than by
real data.

We now divide up the information plang as shown in Fig. 1.10
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1t-—<94o b | o | ba | %2 | b

—ay | b | an | ba | | bw
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Fig. 1.10.—Expansion of arbitrary signal in cosine-type and sine-tvpe
elementary signals.

into cells of size one-half, measuring Af in the time, and }At¢
in the frequency, direction. Starting from the line of zero
frequency, we allocate to these areas in every strip alternately a
cosine-type and a sine-type elementary signal. Evidently we-
must start with a cosine signal at f = 0, as the sine-type signal
would be zero. This leads us to the following expansion of the
real signal s(f):—

k-] . 2 €0
5 = Zn exp — ﬂ(t—Z(A”tL)Zt) Zk [a, cos 2mk(z — nAD[At

+ b

n

. sin 20k -+ Pt — nADJA7] . (1.31)

In order to find the coefficients a,, and b,, we can carry out
the same process of approximation as explained in connection
with expansion (1.30), but with a difference. At the first step
we arrive at an equation of a form

]

£,(0) = Zk a,, cos kx + b sin (k + Dx
0

with the abbreviations x = 2m(t — nADJAt, and f(x) = s(0)
exp im(r — nADZ(AH?.  But the trigonometric series on the
right is not a Fourier series. It is of a somewhat unusual type,
in which the sine terms have frequencies mid-way between the
cosine terms. Tt will be necessary to show briefly that this series
can be used also for the representation of arbitrary functions.
First we separate the even and odd parts on both sides of the
equation, by putting ‘

0

) + (= 0]= Zk a, cos kx
o

o

%[f,,(X) - f;‘(_ X)] = Zk bnk sin (k + %)X

0

The first is a Fourier series, but not the second. We have seen.
however, in Section 3, how all the frequencies contained in a
function can be raised by a constant amount by means of a
process which involves calculating the function in quadrature
with it. Applying this operation to both sides of the last
equation we can add 4 to k + %, and obtain the ordinary Fourier
sine series, which enables the coefficients to be calculated.

The expansion into logons is, in general, a rather inconvenient
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process, as the elementary signals are not orthogonal. If only
approximate results are required, it may be permitted to neglect
the effect of their interference. This becomes plausible if we
consider that an elementary signal has 76-8%, of its energy
inside the band At or Af, and only 11-6% on either side.
Approximately correct physical analysis could be carried out by
means of a bank of resonators with resonance curves of proba-
bility shape. It can be shown that if the energy collected by a
resonator tuned to f is taken as 100%, the resonators on the
right and left of it, tuned to /- Af and F— Af, would collect
only 0:-65% each. Roberts and Simmondst11 112, 1.13 have
given consideration to the problem of realizing circuits with
responses of probability shape.

Though the overlapping of the elementary signals may be of
small practical consequence, it raises a question of considerable
theoretical interest. The principle of causality requires that any
quantity at an epoch 7 can depend only on data belonging to
epochs earlier than 7. But we have seen that we could not
carry out the expansion into elementary signals exactly without
taking into consideration also the “overlap of the future.”” In
fact, strict causality exists only in the ““time language’’; as soon
as we use frequency as an additional reference the sort of un-
certainty occurs which in modern physics has often been called
the “breakdown of causality.” But rigorous time-analysis is
possible only with ideal oscillographs, not with any real physical
instrument; hence strict causality never applies in practice. A
limitation of this concept ought not to cause difficulties to
electrical engineers who are used to the Fourier integral, i.c. to an
entirely non-causal method of description.

(6) SIGNALS TRANSMITTED IN MINIMUM TIME
The elementary signals which have been discussed in the last
Section assure the best utilization of the information area in the
sense that they possess the smallest product of effective duration
by effective frequency width. Tt follows that, if we prescribe
the effective width Af of a frequency channel, the signal trans-
mitted through it in minimum time will have an envelope

W) = exp — QAP — D) (1.32)
and, apart from a cisoidal factor, a Fourier transform
o wf= 1Y
®(f) = exp E(——AT) . (1.33)

But the problem which most frequently arises in practice is
somewhat different. Not the effective spectral width is pre-
scribed, but the total width; i.e. a frequency band (f;, —f) is
given, outside which the spectral amplitude must be zero. What
is the signal shape which can be transmitted through this channet
in the shortest effective time, and what is its effective duration?

Mathematically the problem can be reduced to finding the
spectrum ¢(f) of a signal which makes

fa fa
_ L |dg* dd .
A (2w)2J77 7] J“’” pdf
f1 f1

a minimum, with the condition that (f) is zero outside the
range f; — f,. But this is equivalent to the condition that
&(f) vanishes at the limits f; and f5. Otherwise, if Ji(f) had a
finite value at the limits but vanished outside, the discontinuity
at the limits would make the numerator of equation (1.34)
divergent. (This is the converse of the well-known fact that a
signal with an abrupt break contains frequencies up to infinity,
which decay only hyperbolically, not fast enough to make f2
finite.)

(1.34)
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The problem is one of the calculus of variations, and is solved
in Appendix 9.4, where it is shown that the signals transmitted
in minimum time must be among the solutions of a differential
equation
d2¢ 1
A0
where A is an undetermined constant. But the possible values
of A are defined by the auxiliary condition that $(f) must vanish
at the limits of the waveband.* Hence all admissible solutions
are of the form

(1.35)

(f) = sin knt = A (1.36)

L—h

where k is an integer. We can call this the kth characteristic
function of transmission through an ideal band-pass filter. Its
effective duration is

T k
Af = \/(5)7——2 — (1.37
and its effective frequency width
1
A == 1(5 ~ 72) -3

The shortest duration At belongs to k=1, 1ie. to the_ funda-
mental characteristic function, which is illustrated in Fig. 1.11.

1o 1ol

p—~Transmission

—-f

i A f

. R/

Fig. 1.11.—Spectrum of signal which can be transmitted in minimum
time through an ideal band-pass filter, and the signal itself.

The product ArAf is also smallest for k = 1; its value is 0-571.
Though this is not much more than the absolute minimum, 0-5,
the trapsmission channel is poorly utilized, as the effective
frequency width is only 0-456 of (f — S Practice has four}d
a way to overcome this difficulty by means of asymmetric,
vestigial or single-sideband transmission. In these methods the
spectrum is cut off at or near the centre more or less abruptly.
This produces a “splash,”” a spreading out of the signal in time,
but this effect is compensated in the reception, when the other
sideband is reconstituted and added to the received signal.

The advantages of a signal of sine shape, as shown in Fig. 1.11,
have already been mnoticed, as it were, empirically by Wheeler
and Loughrent in their thorough study of television images. As
in television the signals transmitted represent light intensities,
i.e. energies, our definitions must be applied here with a modi-
fication. [Either the square root of the light intensity must be
substituted for i, or the square root of the Fourier transform

* Problems of this kind are known in mathematics and theoretical physics_as
Sturm—Liouvitle ‘‘proper value”” problems. Cf. COURANT, R., and HILBERT, D.:
“Methoden der mathematischen Physik,” Vol. 1 (Springer, Berlin, 1931}, or “Inter-

science”” (New York, 1943), p. 249, or any textbook on wave mechanics.

+ Ref. No. 14. In comparing the above results with theirs it may be borne in

mind that their “nominal cut-off frequency” is one-half of a sideband, and one-quarter
of the total channel width.
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of the signal for ¢. The practical difference between these two
possible definitions becomes very small in minimum problems.
If we adopt the second, we obtain the same ‘‘cosine-squared”
law for the optimum spectral distribution of energy which
Wheeler and Loughren have considered as the “most attractive
compromise.”

Fig. 1.11 shows also the signal s{r) which is transmitted in
minimum time by a band-pass filter. It can be seen that it
differs in shape very little indeed from its spectrum. It may be
noted that the total time interval in which the signal is appre-
ciably different from zero is 2/(/5 — /7).

It can be seen from Fig. 1.11, that the optimum signal utilizes
the edges of the waveband—in single-sideband television, the
upper edge—rather poorly. But this is made even worse in
television by the convention of making the electromagnetic
amplitudes proportional to the light intensities, so that the
electromagnetic energy spectrum in the optimum case has the
shape of a cos* curve. This means that the. higher frequencies
will be easily drowned by atmospherics. Conditions can be
improved by ‘‘compression-expansion™ methods, in which, for
example, the square root of the light intensity is transmitted,
and squared in the receiver.

(7) DISCUSSION OF COMMUNICATION PROBLEMS BY
MEANS OF THE INFORMATION DIAGRAM
As the foregoing explanations might appear somewhat
abstract, it appears appropriate to return to the information
diagram and to demonstrate its usefulness by means of a few
examples.
Let us take frequency modulation as a first example. Fig. 1.12

AL
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Fig. 1.12.—Three representations of frequency modulation.

contains three different illustrations of the same slowly modulated
carrier: the time representation, the spectrum and its picture in
the information diagram. It can be seen that the third illus-
tration corresponds very closely to our familiar idea of a variable
frequency. The only departure from the naive expectation that
its pictorial representation would be an undulating curve is that
the curve has to be thick and blurred. But it appears preferable
not to show the blurring, not only because it is difficult to draw,
but also because it might give rise to the idea that the picture
could be replaced by a definite density distribution. Instead
we have represented it by logons of area one-half. The shape
of the rectangles, i.e. the ratio A7fAf, is entirely arbitrary and

depends on the conventions of the analysis. If Ar is taken
equal to the damping time of, say, a bank of reeds, the picture
gives an approximate description of the response of the instry-
ment. It gives also a rough picture of our aural impression of
a siren. How this rough picture can be perfected will be shown
in Part 2.

A second example is time-division multiplex telephony, a
problem which almost forces on us the simultaneous considera-
tion of time and frequency. Bennett!15 has discussed it very
thoroughly by an irreproachable method, but, as is often the
case with results obtained by Fourier analysis, the physical
origin of the results remains somewhat obscure. An attempt
will now be made to give them a simple interpretation.

In time-division multiplex telephony, synchronized switches at
both ends of a line connect the line in cyclic alternation to a
number N of channels. Let f, be the switching frequency,
i.c. the number of contacts made per second. What is the
optimum switching frequency if N conversations, each occupying
a frequency band w are to be transmitted without loss of informa-
tion and without crosstalk—i.e. mutual interference between
channels—and what is the total frequency-band requirement W?

The information diagram is shown in Fig. 1.13. The fre-
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Fig. 1.13.—Information diagram of time-division multiplex-telephony
system.

quency band W is sub-divided in the time direction into rectangles
of a duration 1/f,, i.e. f, rectangles per sec. If these are to
transmit independent data they canpot transmit less than one
datum at a time. But one datum, or logon, at a time is also
the optimum, as otherwise the receivers would have to dis-
criminate between two or more data in the short time of contact,
and distribute them somehow over the long waiting time between
two contacts. Hence, if no information is to be lost, the number
of contacts per second must be equal to the data of N con-
versations each of width w, ie. f; == 2Nw. This is also Bennett’s
result.

We now consider the condition of crosstalk. This is the exact
counterpart of the problem of minimum transmission time in &
fixed-frequency channel, considered in the last Section, except
that time and frequency are interchanged. Thus we can say at
once that the optimum signal form will be the sine shape of
Fig. 1.11, and the frequency requirement will be very nearly 2f;.
The characteristic rectangle AtAf of this signal is shown in
every switching period, with the dimensions as obtained in the
last Section. The total frequency band requirement becomes
W = 2f = 4Nw. This can be at once halved by single-sideband
transmission, i.e. transmitting only one-half of W. But even
this does not represent the limit of economy, as the signal is
symmetrical not only in frequency, but also in time. In the
case of the example treated in the previous Section this was of
no use, as the epoch of the signal was unknown. But in time-
division multiplex the epoch of each signal is accurately known;
hence it must be possible to halve the waveband once more and
reduce W to the minimum requirement 7 = Nw. An ingenious,
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though rather complicated, method of achieving this, by means
of special filters associated with the receiving channels, has been
described by Bennett,1.13
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(9) APPENDICES
(9.1) Analysis in Terms of Other than Simple Periodic Functions

The discussion in Section 1 suggests a question: Why are we
doing our analysis in terms of sine waves, and why do we limit
our communication channels by fixed frequencies? Why not
choose other orthogonal functions? In fact we could have taken,
for example, the orthogonalized Bessel functions

N OT (117

as the basis of expansion. J, is a Bessel function of fixed but
arbitrary order n; 7 is the kth root of J, (x)=10; k is the expan-
sion index. These functions are orthogonal in the interval
0 < t <« 7. The factors r /7 have the dimension of a frequency.
We could now think of limiting the transmission channel by
two “Bessel frequencies,” say pq and p, Here the first differ-
ence arises. The number of spectral lines between these Limits
will be the number of the roots of J (x) = 0 between the limits
gy and p,T. But this number is not proportional to T.
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Hence a Bessel channel, or a channel based on any function
other than simple harmonic functions, would not transmit the
same amount of information in equal time intervals.

In principle it would be possible to construct circuits which
transmitted without distortion any member of a selected set of
orthogonal functions. But only harmonic functions satisfy
linear differential equations in which time does not figure
explicitly; hence these are the only ones which can be trans-
mitted by circuits built up of constant elements. Every other
system requires variable circuit components, and as there will
be a distinguished epoch of time it will also require some sort
of synchronization between transmitter and receiver. In com-
petition with fixed-waveband systems any such method will have
the disadvantage that wider wavebands will be required to avoid
interference with other transmissions. Though this disadvantage
—as in the case of frequency modulation—might be outweighed
by other advantages, investigation of such systems is outside the
scope of the present study, which is mainly devoted to the
problem of waveband economy.

(9.2) Mechanical Generation of Associated Signals, and the
Problem of Direct Production of Single Sidebands

In order to gain a more vivid picture of signals in quadrature
than the mathematical explanations of Section 3 can convey, it
may be useful to discuss a method of generating them mechan-
ically. It is obvious from equations (1.7) and (1.8) that, in order
to generate the signal o(7) associated with a given signal s(r), it
is necessary fo know not only the past but also the future. 'Though
formally the whole future is involved, the “relevant future” in
transmission problems is usually only a fraction of a second.
This means that we can produce o(r) with sufficient accuracy if
we convert, say, 0-1sec of the future into the past; in other
words, if we delay the transmission of s(z) by about this interval.
Fig. 1.14 shows a device which might accomplish this. '

Lamp

s(r*r)\j

Photocell

Fig. 1.14.—Device for mechanical generation of 2 signal in quadrature
with a given signal.

The light of a lamp, the intensity of which is modulated by
the signal s(2), is thrown through a sliton a transparent rotating
drum, coated with phosphorescent powder. The drum therefore
carries a record of the signal with if, which decays slowly. After
turning through a certain angle the record passes a slit, and here
the light is picked up by a photocell, which transmits s() with
a delay corresponding to the angle.* On the inside of the drum
two hyperbolically-shaped apertures are arranged at both sides
of the slit opposite to the first photocell. The light from the
two hyperbolic windows is collected by two photocells, which
are connected in opposition. By comparing this arrangement

+ A somewhat similar device (for another purpose) has been described by Goldmark
and Hendricks (Ref. No. 1.10).
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with equation (1.7) it is easy to see that the difference of the two
photocell currents will be proportional to the function in quadra-
ture with s(7).

The complex signal has been discussed at some length as it
helps one to understand certain problems of communication
engineering. One of these is the problem of single-sideband
transmission. Tt is well known that it is not possible to produce
a single sideband directly. The method employed is to produce
both sidebands and to suppress one. Equation (1.7) explains
the reason.  Direct single-sideband production involves knowledge
of the future. The conventional modulation methods always
add and subtract frequencies simultaneously., With mechanisms
like the one shown in Fig. 1.14 it becomes possible to add or
subtract them. This means forming the following expression

R[Y(1) exp jw 2] = (1) cos w,t — o(r) sin w,t

where w_ is the angular carrier frequency. By substituting a
harmonic oscillation for s(r) is is easy to verify that w, has been
added to every frequency present in the signal. Direct produc-
tion of single sidebands involves, therefore, the following opera-
tions: Modulate the signal with the carrier wave, and subtract
from the product the modulation product of the signal in
quadrature with the carrier wave in quadrature. It is not, of
course, suggested that this might become a practical method;
the intention was merely to throw some light on the root of a
well-known impossibility.

(9.3) The Schwarz Inequality and Elementary Signals
The inequality

ay* day¥

dr dr

is valid for any real or complex function ¥ which is continuous
and differentiable and vanishes at the integration limits. The
following is a modification of a proof given by H. Weyl.

If a, b; are two sets of n real or complex numbers, a theorem
due to H. A. Schwarz states that

(V*¥dr)z <4 ‘F*’rz‘}"dr)( d’T) (1.39)

+ anbniz < (alaT e + anafz)
(bt — ...+ bp*

laoy + ...
(1.40)

If @’s-and b’s are all real numbers, this can be interpreted as
expressing the fact that the cosine of the angle of two vectors
with components @, . . . a,and b, . . . b, in an #-dimensional
Euclidian space is smaller than unity. This can be easily under-
stood, as in a FEuclidian space of any number of dimensions a
two-dimensional plane can be made to pass through any two
vectors issuing from the origin; hence the angle between them
has the same significance as in plane geometry. Equation (1.40)
is a generalization of this for “Hermitian’’ space, in which the
components or co-ordinates of the vectors are themselves complex
numbers.

By a passage to the limit the sums in (1.40) may be replaced
by integrals, so that

2aby — [ f(Tg(r)dr

and similarly for the other two sums.
takes the place of the summation index.

now becomes
|[fg dr|2 < (fff*dr)([gg*dr) . (1.41)
This remains valid if we replace f and g by their conjugates
|[frg*dr2 < ([ff*dr)([gg*dr) . (1.42)

?3 9V3VEYL, H.: “The Theory of Groups and Quantum Mechanics” (Methuen, 1931),
p. .

The real variable 7 now
The Schwarz inequality
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Adding (1.41) and (1.42) we obtain

2A[ffrdr)([gg*dr) > |[fedT|t + |[f*g*dr]?
> [z + f*g*)dr 2

The second part of this inequality states the fact that the sum
of the absolute squares of two conjugate complex numbers js
never less than half the square of their sums.

We now put

(1.43)

d\yp*

f=¥ g§=— (1.44)

Substitution in (1.43) gives

g+

susraneean > | (0 1 gt

2
+ ‘F*F Td'r:] (1.45)

The right-hand side can be transformed by partial integration into

*
[
-
where it has been assumed that ¥ vanishes at the integration
limits. Substituting this in (1.45) we obtain the inequality (1,39).
In order to obtain the elementary signals we must investigate
when this inequality changes into an equality. From the "
geometrical interpretation of Schwarz’s inequality (1.40), it can
be concluded at once that the equality sign will obtain if, and
only if, the two vectors a, & have the same direction, i.e.

b, = Ca,

- l/,*é‘g) TdT = J T%(l}”*‘{f)dr =—[¥*\¥dr  (1.46)

In Hermitian space the direction is not changed by multiplica-
tion by a complex number, hence C need not be real.

This condition can be applied also to the inequality (1.39),
but with a difference. (1.39) will become an equation only if
both the conditions (1.41) and (1.42) become equalities; i.e. if
the following two equations are fulfilled

f=Cg and f* = C'g* (1.47)

where C and C’ are real or complex constants. But these two

equations are compatible if, and only if,

C'=C* (1.48)

in which case the two equations (1.47) become identical. On
substituting f and g from (1.44) they give the two equivalent
equations

i‘{i' =C*P* . . (1.49)
dr

From either of these we can eliminate " or its conjugate ¥** and
are led to the second-order differential equation

drldvy .
2\ ) = coy (1.50)
Multiplying both sidés by (dW/dr)/7, this becomes integrable and

gives :

(1 ay 2

_ — ] 2 L 5
e CC*¥2 + const. (1.51)

But the constant is zero, as at infinity both ¥ and d¥/d+ must
vanish. We thus obtain the first-order equation

oy

i + (CCHiry

(1.52)



Ly the solution (apart from a constant factor)
¥ = exp £ 3|C[72.

the two signs we can retain only the negative one, as other-
. the signal would not vanish at infinity. Putting }C| = «
obtain the envelope of the elementary signal. The signal
i results from this by multiplying by cis 2nf(f — 7) and i3
cussed in Section 5.

it will be useful to sketch briefly the difference between the
glysis based on elementary signals and the method of wave
chanics. In the foregoing we have answered the question:
iat functions §* make the product AfAr assume its smallest
$ible value, i.e. one-half? The question posed by wave
§chanics is more general: What functions " makes AfAr a
§nimum, while fulfilling the condition of vanishing at infinity?
ws is a problem of the calculus of variations, which leads,
fead of to eqn. (1.50), to a more general equation, called the
Save equation of the harmonic oscillator’”:

a2y

FT(A—O@*ﬂ)‘FzO

(1.53)

dere A and « are real constants. This equation, which con-
gins (1.50) as a special case, has solutions which are finite every-
ftere and vanish at infinity only if

A=an+ 1)

'a;hcre nis a positive integer. These “proper”’ or ‘“‘characteristic”
Hutions of the wave equation are (apart from a constant factor)

n
\P‘ — e¢— w22 d e~ o272
" dm

y are known as orthogonal Hermite functions* and form
basis of wave mechanical analysis of the problem of the
r oscillator. They share with the probability function—

ich can be considered as the Hermite function of zero order—
property that their Fourier transforms are of identical type.
product AfA¢ for the nth Hermite function is

AAf =320+ 1)

That is to say that the Hermite functions occupy in the informa-
fon diagram areas of size §, 3, § . . . Because of their ortho-
bnality Hermite functions readily lend themselves to the expan-
on of arbitrary signals; hence their importance in wave
hanics. But they are less suitable for the analysis of con-
nuously emitted signals, as they presuppose a distinguished
och of time 7 =0, and they do not permit the sub-division of
e information area into non-overlapping elementary cells.t

* Also known as parabolical cylinder functions and Weber-Hermite functions
f. WHITTAKER and WATSON: “Modern Analysis,” pp. 231, 347. They are discussed
hall textbooks on wave mechanics. Cf. also the study by Baser, T. D. H,, and
Hmsky, l..: “Note of Certain Integrals involving Hermite’s Polynomials,”” Philo-
Swhical Magazine (VII), 1944, 35, p. 532.

t The derivations in this Appendix can be considerably shortened if use is made
ifthe symbolic operator method of quantum mechanics. Cf. Max BorRN: ‘“Atomic
Physics” (Blackie, 1935), Appendix XXI, pp. 309-313.
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(9.4) Signals Transmitted in Minimum Time through a Given
Frequency Channel

It will be convenient to use “frequency language,” ie. to
express the signal by its Fourier transform ¢(f). The problem
is to make the effective duration Ar of a signal a minimum,
with the condition that ¢(f) = 0 outside an interval f; — f5.
Thus '

fa
. 1 dp* do
Ar = (—————ZW)ZMOJ;? Efdf (1.54)

must be a minimum, where
S2
M0 —= J(}S*(ﬁdf
1

This is equivalent to making the numerator in (1.54) a mini-
mum with the auxiliary condition M, = constant, and this in
turn can be formulated by Lagrange’s method in the form

dg* de  p N ar—

5| (G 4 - )=
where A is an undetermined multiplier.
first term is

sj‘@f s

(1.55)

The variation of the

df df
 [rddrdd | dpodgr . [(db* ddp . db dber
“J(czf'-ng*?fsaf)"f—f(df e 4

But at the limits ¢ must vanish, as it is zero outside the interval
and must be continuous at the limit, as otherwise the integral
(1.54) would not converge. Hence we have here 8¢ = 8¢* = 0,
and the first term vanishes. The variation of the second term
in (1.55) is :
A[($*8¢ + Pd*)df (1.57)

The condition (1.55) thus gives
d2¢,>:< l . quS " B
J[ a7 " Ad )5:;5 + (Zif—z + A¢)8¢ df =0 (1.58)
and this can be identically fulfilled for arbitrary variations dp
if, and only if,

d2

df? ¢
This is the differential equation which has to be satisfied by the
signal transmitted in minimum time. [Its solution is discussed
in Section 6.

(1.59)
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Part 2.

SUMMARY

The methods developed in Part 1 are applied to the analysis of
hearing sensations, in particular to experiments by Shower and Bid-
dulph, and by Biirck, Kotowski and Lichte on the discrimination of
frequency and time by the human ear. It is shown that experiments
of widely different character lead to well-defined threshold *areas of
discrimination’ in the information diagram. At the- best, in the
interval 60-1 000 c/s the human ear can discriminate very nearly every
second datum of information; i.e. the ear is almost as perfect as any
instrument can be which is not responsive to phase. Over the whole
auditory range the efficiency is much less than 50%, as the discrimina-
tion falls off sharply at higher frequencies.

The threshold area of discrimination appears to be independent of
the duration of the signals between about 20 and 250 millisec. This
remarkably wide interval cannot be explained by any mechanism in
the inner ear, but may be explained by a new hypothetical effect in nerve
conduction, i.e. the mutual influence of adjacent nerve fibres.

(1) ANALYSIS OF HEARING

In relation to the ear, two rather distinct questions will have
to be answered. The first is: How many logons must be trans-
mitted per second for intelligible speech? The second is the
corresponding question for the reproduction of speech or music
which the ear cannot distinguish from the original.

A precise answer to the first question will not be attempted,
but some important data must be mentioned. Qrdinarily it is
assumed that the full range between about 100 and 3 000 ¢fs is
necessary for satisfactory speech transmission. But Dudley
Homer’s ingenious speech-analysing and synthetizing machine,
the Vocoder,2t has achieved the transmission of intelligible
speech by means of 11 channels of 25c¢/s €ach, 275¢/s in all.
This means a condensation, or compression, ratio of about 10.

Another datum is an estimate by Kiipfmiiller* of the product
of time-interval by frequency-width required for the transmission
of a single letter in telephony, and in the best system of telegraphy,
as used in submarine cables. The ratio is about 40. This
suggests that the Vocoder has probably almost reached the
admissible limit of condensation.

The transmission which the ear would consider as indistin-
guishable from the original presents a more exactly defined and
intrinsically simpler problem, as none of the higher functions
of intelligence come into play which make distorted speech
intelligible. G. W. Stewart in 1931 was the first to ask whether
the limit of aural sensation is not given by an uncertainty
relation, which he wrote in the form AtAf = 1, without, how-
ever, defining Ar and Af precisely. He found the experimental
material insufficient to decide the question, though he concluded
that there was some evidence of agreement. New experi-
mental results, which have become available since Stewart’s note,
and a more precise formulation of the question, will allow us
to give a more definite answer.

In Section 5 of Part 1, methods were described for the expan-
sion of an arbitrary signal into elementary signals, allocated to
cells of a lattice. Fig. 2.1 is an example of a somewhat different
method of analysis, in which the elementary areas have fixed
shape but no fixed position, and are shifted so as to give a
good representation with a minimum number of elementary
signals. We now go a step further, and adjust not only the
position but also the shape of the elementary areas to the signal,
in such a way that it will be approximately represented by a
minimum number of logons. This may be called ‘*black-and-
white’® representation, and it is suggested that—within certain
limits—it is rather close to our subjective interpretation of aural

* Quoted by Liischen, Reference 1.6.
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Fig. 2.1.—Sine wave of finite length.

(@) Response of a bank of resonators.
(b) Approximate response of the ear.

sensations. Fig. 2.1 illustrates this. If a sine wave of finite
duration strikes a series of resonators, say a bank of reeds, with
a time-constant which is a fraction of the duration, their response
will be approximately as shown by (a). But, as the ear hérdly
hears the two noises or ‘“clicks’ at the beginning and end of
the tone, its sensations can be better described by Fig. 2.1(b).
We shall find later more evidence for what may be called the
“adjustable time-constant’’ of the ear. It appears that, in:
general, the ear tends to simplify its sensations in a similar way |
to the eye, and the analogy becomes very evident in the two- |
dimensional representation.

It will be shown below that there is good evidence for what
may be called a “threshold information sensitivity”” of the ear, |
i.e. a certain minimum area in the information diagram, which
must bz exczeded if the ear is to appreciate more than one
datum. The usefulness of this concept depends on how far this
threshold value will be independent of the shape of the area.
We must therefore test it by analysing experiments with tone
signals of different duration. :

It has been known for a long time (Mach, 1871) that a very
short sinusoidal oscillation will be perceived as a noise, but
beyond a certain minimum duration as a tone of ascertainable |
pitch. The most recent and most accurate experiments on this |
subject have been carried out by Biirck, Kotowski and
Lichte22.23 They found that both at 500 and 1000 c/s the
minimum duration after which the pitch could be correctly
ascertained was about 10 millisec for the best observers. In a
second series of experiments they doubled the intensity of Fhe ‘
tone after a certain time, and measured the minimum duration
necessary for hearing the step. For shorter intervals the steppf?d
tone could not be distinguished from one which started with
double intensity. :

These two series of tests enable us to estimate the threshold
area for very short durations. Fig. 2.2 explains the method .fOr
a frequency of 500c/s. After 10 millisec the signal was just
recognizable as a tone. But unless it lasted for at least
21 millisec, the ear was not ready to register a second datum,
independent of and distinguishable from the first. We coll”
clude, therefore, that the threshold area is determined by the
frequency width of the first signal and the duration of fhe
second. It is not necessary to approximate the chopped sin€
waves by elementary signals, as the ratio of the durations woul
remain the same. This was 2- 1 for 500 c/s, and 3-0 for 1 000 ¢/s-
We conclude that in these regions it takes 2-1 and 3 elementary
areas respectively to convey more than one datum to the ear.
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Fig. 2.2.—Experiments of Biirck, Kotowski and Lichte.

Let us now consider another series of tests, the experiments
Shower and Biddulph on the pitch sensitivity of the ear?4.
L these tests the frequency of a note was varied almost sinu-
idally between a lower and an upper limit. The actual law
( variation was not exactly sinusoidal, as the top of the wave

flattened and rather difficult to analyse in an exact manmner.
the following approximate analysis we will replace it by
usoidal frequency modulation with a total swing 8f, equal
the maximum swing in the experiments. By this we are likely
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1t is well known!-5 that the spectrum of a frequency-modu-
tated wave with mean frequency fo, total swing 8f and modula-
tion frequency f,, can be expressed by the following series

cis (2mfyt %’: sin 27rfmt>

~ ZJH(S FI2f )y cis 2m(fy + bt o (20
J, is the Bessel function of nth order. The amplitudes of the
side lines, spaced by the repetition frequency, arc therefore pro-
portional to Jn(B f12£,). Their absolute values are shown at
the bottom of Fig. 2.3 for four tests of Shower and Biddulph.
On the other hand, the absolute amplitudes of the side lines in
the spectrum of the two alternating sequences of elementary
signals are given by the following formulae

™2 o cosh /m\?2 5
I, — exp (;) @ (a) of,fi . . QD
The upper formula is valid for even, the lower for odd, orders n.
With the help of equations (2.1) and (2.2) the available constants
o and £, have been fitted so as to represent exactly the ratio of
the first two side lines to the central one. The result is shown
in Fig. 2.3, in which the elementary signals are represented by

-1 f(‘rl

- -1 +ll! 1 ‘-l I*l\ ‘_J -1

The frequency-moduiated

&y commit an error in the sense of overrating the ear sensitivity,
this will give us a safe basis for estimating the chances of
eiving the ear. The modulation frequency in Shower and
Piddulph’s experiments was 2 cfs, and the sensation level was
pt constant at 40 db above the threshold of audibility. Their
ults for the minimum variation Sf at which the trill could
Just be distinguished from a steady tone are as follows:—

250 500 1000 2006 4000 8 000 cfs

Wiy
| 0.043 0-025 0-012 0-005 0-003 0-6023 0-00225 0-0037 /s

Bf

2.7 31 29 25 30 4-6 9-0 29-5 cfs

it will be seen that & f remains almost constant up to 1000 ¢/s;
from about 1000 ¢fs it is the ratio 8 f[fy which is nearly constant.
We now replace the signals used in these experiments by two
feriodic sequences of elementary signals with frequencies
fy = 1f,, staggered in relation to one another, so that pulses with
higher and lower frequency alternate at intervals of 0-25 sec.
;ln order to approximate the actual signal as well as possible,
fwe must use the available constants f, and « (the “sharpness’’
f the elementary signals) so as to produce nearly the same

Spectrum.

Fig. 2.3.—FExperiments of Shower and Biddulph.

signals are replaced by two alternating series of elementary signals which produce very neatly the same spectrum.

their rectangles of area one-half. The agreement of the spectra
even for higher orders n is very good up to 2000 c/s, but less satis-
factory at 4000 and 8 000c/s. But it would be useless to try
better approximations, for example by adding one or two further
sequences of elementary signals. More accurate information
could be obtained only from experiments based on elementary
signals. It may be hoped that such tests will be undertaken,
especially as Roberts and Simmonds have suggested easy methods
for producing such signals.

For a first orientation the results derived from the tests of
Shower and Biddulph appear quite satisfactory. It can be seen
from Fig. 2.3 how rectangles can be constructed in the informa-
tion diagram which mark the limit at which the ear can just
begin to appreciate a second datum. In this case the meaning
of the threshold is that the trill can just be distinguished from
a steady tone. Measured in units of elementary areas of one-

half, their values are as follows:—

62-5-1000 2000 4000 8000 cfs

Frequency ..
2-34 2-88 392 6-9

(Threshold area)/C-5

The reciprocals of these figures can be considered as per-
formance figures of the ear as compared with an ideal instrument.
In fact, the performance figure of an ideal instrument would be
unity, as it would begin to appreciate a second datum as soon
as the minimum information area of one-half was exceeded by
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an amount, however small. The performance figure derived
from the experiments of Shower and Biddulph between 62 and
8 000 c/s is shown in Fig. 2.4. The diagram also contains two

A
50,

40 <
B
30 s

20 1

0 2 3 4 ;P 6 7
Fig. 2.4.—Performance figure of the ear.
B.K.L.—Biirck, Kotowski and Lichte. S. and B.—Shower and Biddulph.
points derived from the experiments of Biirck, Kotowski and
Lichte, which fit in as well as can be expected. It is very remark-
able that up to about 1000 cfs the performance figure is almost
509, which is the ideal for an instrument like the ear which
cannot distinguish the phase of oscillations, i.e. rejects one-half
of the data. At higher frequencies, however, the efficiency is
much less.

The good fit of the figures obtained from the experiments of
Biirck, Kotowski and Lichte, which were carried out with dura-
tions of 10-20 millisec, with those of Shower and Biddulph, in
which the threshold area measured 250 millisec in the time direc-
tion, indicates two facts. One is that, at least up to about
1 000 c/s, and for durations at least in the limits 20-250 millisec,
the threshold information area is a characteristic of the ear.
Evidently the performance figure must go to zero both for
extremely short and for extremely long elementary signals, but
within these wide and very important limits it appears to have
an almost constant value.

The other fact which arises from the first is that the ear appears
to have a time-constant adjustable ar least between 20 and 250
millisec, and that the ear adjusts it to the content of the informa-
tion which it receives. But there can be little doubt that, what-
ever resonators there are in the ear, they are very strongly
damped, and that their decay time is of the order of 20 millisec
or rather less. This is borne out by the experiments of Wegel
and Lane on the amplitudes of the oscillations of the basilar
membrane in the inner ear.* A pure tone excites such a broad
region to oscillations that R. S. Hunt,27 who has recently made
a thorough investigation of Wegel and Lane’s data, infers from
them a decay by 1 bel in only 2 cycles, i.e. in only 2 millisec
at 1 000c/s! Though this estimate might be too low, there can
be no doubt that the decay time of the ear resonators cannot
substantially exceed 10 millisec, and it is impossible to imagine
that they would keep on vibrating for as much as a quarter of
a second. Hence, even if the duration of a pure tone is con-
siderably prolonged beyond the 10 millisec approximately
required for pitch perception, the ear resonators will still display
the same broad distribution of amplitude. This is illustrated
in Fig. 2.5. 1In order to explain the high pitch sensitivity of the
ear, as shown, for example, by the experiments of Shower and
Biddulph, it is therefore necessary to assume a second mechanism
which locates the centre of the resonance region with a precision
increasing with the duration of the stimulus. 1ts effect is indi-
cated in Fig. 2.5. The second mechanism acts as if there were

* Reference 2.6. Also HArvey FLeTCHER: “Speech and Hearing’” (Macmillan,
1929), p. 184.
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Fig. 2.5.—The two mechanisms of pitch determination,

a second resonance curve, of a non-mechanical nature, which '
after about 10 millisec detaches itself from the mechanical
resonance curve and continues to contract until, after about:
250 millisec, it covers only a few cycles per second. :

Both mechanisms are essential for our hearing. The first by
itself would probably enable us to understand speech, but only
the second makes it possible to appreciate music. One might
be tempted to locate this second function in the brain,-but
mechanisms of nerve conduction can be imagined which might
achieve the same effect. Perhaps the simplest assumption is
that the conduction of stimuli in adjacent nerve fibres is to some
extent unstable, so that in an adjacent pair the more strongly
stimulated fibre will gradually suppress the conduction in its
Iess excited neighbour. The available evidence would not
justify the suggestion that this is the actual mechanism; the
intention is only to show that what manifests itself as the
“adjustable time-constant’”® of the ear is not necessarily a
consequence of some higher function of intelligence.

In the light of these results we can now approach the question
of a condensed transmission which entirely deceives the ear.
The performance figure as shown in Fig. 2.4 appears to indicate
that considerable economy might be possible, especially in the
range of higher frequencies. This is brought into evidence even
more clearly in Fig. 2.6, which contains the integrals over fre-
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Fig. 2.6.—Utilization of information area.

quency of the performance figures for the ear and for an ideal
instrument. Between zero and 8000c/s, for instance, the
maximum number of data which the ear can appreciate is only
about one-quarter of the data which can be transmitted in a
band of 8000cfs. It is even likely that further investigations
might substantially reduce this figure. It may be remembered
that the experiments on which Fig. 2.6 is based have all been
carried out with sharp or rather angular waveforms; it is not
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gikely that the threshold was essentially determined by logons
gside the area considered in our analysis. But it must also be
membered that the “‘adjustable time-constant™ makes it very
Foult to deceive the ear entirely. It will be shown in Part 3
t methods are possible which could deceive any non-ideal
ment with fixed time-constant. But the ear has the re-
kable property that it can submit the material presented to
sot only to one test, but, as it were, t0 several. Ultimately
y direct tests can decide whether any such scheme will work
isfactorily.
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SUMMARY
It is suggested that it may be possible to transmit speech and music
L much narrower wavebands than was hitherto thought necessary,
by clipping the ends of the waveband, but by condensing the
ormation. Two possibilities of more economical transmission are
ussed. Both have in common that the original waveband is
pressed in transmission and re-expanded to the original width in

ption. In the first or “kinematical” method a temporary OI
ermanent record is scanned by moving slits or their equivalents,
shich replace one another in continuous succession before a ‘“window.”
yathematical analysis is simplest if the transmission of the window
& graded according to a probability function. A simple harmonic
scillation is reproduced as a group of spectral lines with frequencies
which have an approximately constant ratio to the original frequency.
e average departure from the law of proportional conversion is in
werse ratio to the time interval in which the record passes before
be window. Experiments carried out with simple apparatus indicate
fhat speech can be compressed into a frequency band of 800 or even
500 c/s without losing much of its intelligibility. There are various
ossibilitics for utilizing frequency compression in telephony by means
# the “kinematical” method.

In a second method the compression and expansion are carried out
Hectrically, without mechanical motion. This method consists essen-
w. lly in using non-sinusoidal carriers, such as repeated probability
fmlses, and local oscillators producing waves of the same type. Itis
ihown that one variety of the electrical method is mathematically
gequivalent to the kinematical method of frequency conversion.

-

(1) INTRODUCTION

High-fidelity reproduction of speech or music by current
methods requires a waveband of about 8 000c¢/s. It has been
hown in Part 1 that this band-width is sufficient for the trans-
mission of 16000 exact and independent numerical datg per
wecond. This high figure naturally suggests the question whether
“all of this is really needed for the human ear to create an
illusion of perfection. In Part 7 it was shown that, even in
ithe frequency range in which it is most sensitive, the human ear
tan appreciate only one datum in two at the best, and not more
than one in four as an average over the whole a.f. range. More-
over, it must be taken into consideration that, in the experiments
which gave these limits of aural discrimination, attention was
fixed on a very simple phenomenon. It appears highly probable
that for complex sound patterns the discriminating power of the
fear is very much less. This evidence suggests that methods of
transmitting and reproducing sound may be found which are
much more economical than those used at present, in which the
original signal shape is carefully conserved through all the links
of transmission or reproduction. In an economical method
the information content must be condensed to a minimum before
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Part 3. FREQUENCY COMPRESSION AND EXPANSION

transmission or before recording, and the reconstruction need
not take place before some stage in the receiver or reproducer.
There is no need for the signal to be intelligible at any inter-
mediate stage. FEconomical methods must therefore comprise
some stage of “condensing’> or *“coding”’ and some stage of
“expanding’ or “decoding.”

Dudley Homer’s ingenious Vocoder,3!1 which transmits in-
telligible speech through 11 channels of only 25c¢[s each, is a
well-known example of such a system. It operates with a
method of spectral analysis and synthesis. The spectrum of
speech is roughly analysed into 10 bands of 250c/s each, and
the aggregate intensity in each band is transmitted through a
separate channel of 25c/s. The transmitted intensity is used
for modulating a buzzer at the receiving end, which roughly
reproduces the original spectrum. The eleventh channel is used
for transmitting the “‘pitch,”” which is, broadly speaking, the
frequency of the vocal cords. The Vocoder in its present form
has probably very nearly reached the limit of tolerable com-
pression.

In this Part new methods will be discussed in which the coding
of the message consists essentially in compression, i.e. in a pro-
portional reduction of the original frequencies, and the decoding
in expansion to the original range. It is evident that neither
compression nor expansion can be exact if economy is to be
effected. If, for instance, all frequencies were exactly halved,
this would mean that it would take twice the time for trans-
mitting the same message and there would be no saving. Com-
pression and expansion—in general, «conversion”—of fre-
quencies must be rather understood in an approximate sense.
There will be unavoidable departures from the simple linear
law, and hence there will be some unavoidable distortion. But
it appears that these can be kept within tolerable limits while
still effecting appreciable waveband economy.

Two compression-expansion systems will be described. The
first, which operates with mechanically moving parts, will be
called the “kinematical” method,* while the second does not
require mechanical motion and will be called the “electrical”’
method. So far, experiments have been carried out only with
the kinematical method, and for this reason it will cccupy most

of this Part.

(2) THE KINEMATICAL. METHOD OF FREQUENCY
CONVERSION
1t will be convenient to explain this method by means of a
particular example before generalizing the underlying principle.
Assume that the message to be condensed or expanded is recorded
* British Patent Application No. 24624[44.
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as a sound track on a film. For simplicity, assume that the
original signal is a simple harmonic oscillation, that is to say a
frequency Jy—to be called the “original frequency’—is produced
if the record moves with standard speed » past a stationary slit.
Imagine now that the slit itself is moving with some speed u, so
that its speed relative to the film is » — u. The photoceil behind
the film now collects fluctuations of light of frequency

v — U

fi= S 7R ¢ B )

v
This means that all frequencies in the record are converted in a
constant ratio {v — u)fv. There is evidently no gain, as it would
take the moving slit »/(» — 1) times longer to explore a certain
length of the film than if it were stationary. But let us now
imagine that the film moves across a fixed window, so that the
moving slit is effective only during the time in which it traverses
the window. In order to get a continuous record let a second
slit appear at or before the instant at which the first slit moves
out of the window, after which a third slit would appear, and
80 on. The device is still not practicable, as evidently every siit
would produce a loud crack at the instant at which it ap-
peared before the window and when it left it. But now
assume that the window has continuously graded transmission,
full in the middle and fading out at both sides to. total
opacity. In this arrangement the slits are faded in and out
gradually, so that abrupt cracks can be avoided. This is the
prototype of a kinematical frequency convertor, schematically
illustrated in Fig. 3.1, which will be investigated below. Though

Slotted
drum

Photocell

Frequency convertor with sound film.

Fig. 3.1,

the nomenclature will be taken from this special example, the
mathematical theory can be transferred bodily to any other
realization of the same principle.

In Fig, 3.1 the film is supposed to move in close contact with
the slotted drum, but at different speed. A photocell collects
the sum of the light transmitted by the individual slits and by
the window. To obtain its response we must first write down
the contribution of one slit and sum over the slits. All slits
will be assumed to have negligible width. For simplicity let
us measure all distances x from the middle of the window and
all times ¢ from the instant in which a slit, to be called the
“‘zero”’-th slit, passes through x = 0. The other slits will be
distinguished by suffixes k&, which increase in the direction in
which the film is moving. Their position at the time ¢ will be
called x,. The nomenclature is explained in Fig. 3.2.

Let v be the speed of the film, while the velocity of the slits

will be called
v=(1—xw (3.2)

The reason for this notation is that eqn. (3.1) now simplifies to
Ji = kfy, i.e. k has the meaning of a frequency-conversion ratio.
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Fig. 3.2.—Explanation of notations.

If the spacing of two slits is s the position of the kth slit at
time 7 is given by
x, = — kvt + ks (3.3)

The record will be characterized by the signal s,(Y) which it
would produce if it were scanned in the ordinary way by a
stationary slit in the position x = 0. Hence, if the window
were fully transparent, the signal due to the kth slit at time ¢

would be
(3.4)

The total reproduced signal, i.e. the light sum collected by the
photocell, is obtained from this by multiplying by the trans-
mission coefficient P(x) of the window and summing over k.

In all the following calculations we will assume that this
transmission follows a probability law. This law has unique
properties in Fourier analysis and will immensely simplify our
investigations. Other laws which appear equally simple a priori,
and which may have even some practical advantages—such as
triangular or trapezoidal windows—lead to expressions which
are too complicated for anything but numerical discussion.
Hence we assume

5,(t — x,Jv) = syt — k)

P(x)=exp— (x/[Ns)2 . . . . (3.3)

N is a number, to be called the ““slit number,”” which charac-
terizes the reproduction process. It is the number of slits in
the length over which the transmission of the window falls from
unity to 1/e. The total length of the window in which the
transmission exceeds 19 is 4:3Ns, Thus we can say broadly
that the total number of slits simultaneously before the window
is 4-3N.

The reproduced signal, i.e. the total light collected by the
photocell, at time ¢, is

() = Zk exp — (x /N$)Zs((t — x.Jv)

-0

(3.6)

This, in' combination with eqn. 3.3, is a complete description
of the operation of the frequency convertor. It will now be
illustrated in the special case in which s, is a simple harmoniC

oscillation
s,(1) = e2rifet = cis 2 fyt (3.7

The complex form will be used, with the understanding that the
real part constitutes the physical signal. Simple harmoniC
oscillations are suitable for the analysis, as their spectrum W‘_H
consist of a few lines. But it may be mentioned that analysis
in terms of the elementary signals discussed in Part 1 (harmoni¢
oscillations with probability envelope) can be carried out almOSt
equally simply, as the reproduction of an elementary $1g03
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sists also in the sum of a few elementary signals. This
. carried out in Appendix 7.1, but in the text only the more
iliar method of Fourier analysis will be employed.
Substituting the signal (3.7) in egn. (3.6) and using eqn. (3.3),
obtain

a0

) = kexp — [(1 — wot + ksJ(No)? cis 2 fofuct — sl)
(3.8)

—®

e meaning of this somewhat complicated expression is ex-
Each slit, as it passes before the window,

lained in Fig. 3.3.

Best r‘ep_roduction

Worst reproduction

5Fig. 3.3.—The contributions of individual slits and the resulting light
output.

iransforms the sine wave into an elementary signal. By adding
fup the contributions of the individual slits we obtain for some
frequencies a very nearly faithful reproduction, i.e. an almost
pure tone but of different frequency from the original. For
other frequencies we obtain strong beats.

A more convenient and complete description of the frequency
tonversion process is obtained by Fourier analysis. It will now
e convenient to measure distances in time intervals, and to
introduce, instead of the slit spacing s, the time interval 7 between
the passage of two consecutive slits before a fixed point

T =s/(l — kv

{ With this notation the Fourier transform, i.e. the spectrum
iof the signal s(f), becomes, by known rules,*

S(f)=+/(mNTexp — (NS —'be)ZZk cis 27kT(f — f)
j (3.10a)

3.9

—00

This expression allows of a simple interpretation. The
second factor

Sk cis 2akT(f — fp)

is the sum of an infinite number of complex vectors of unit
length, with an angle of 2m7{(f — Jo) between two consecutive
vectors. This series, though not convergent, is summable,t and
its sum is zero for all values of f except those for which

7(f — fy) = an integer

‘ Physically this means that the spectrum consists of sharp lines
which differ from one another by multiples of 1/7. In other

* The calculation is carried out in Appendix 7.1. The rules for Fourier transforms
may be found in Reference 3.2, and, particularly for signals of the type (3.8), in

References 3.3 and 3.4.
+ Summation is to be understood in the sense of Cesaro.

WATSON: “Modern Analysis,” 1935, p. 155.

3.1
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words, the spectrum consists of all combination notes of the
original frequency f, with the repetition frequency 1 I~

The absolute sharpness of the spectral lines is a consequence
of the assumption that the slits pass before the window at
mathematically exact equal intervals. In each spectral tine S(f)
is a “delta function,” i.c. a sharp peak of infinite height but
finite area. But as in what follows we shall always have to deal
with line spectra, it is more convenient to re-interpret S(f) asa
function which is zero except at certain discrete values of f,
where it assumes finite values, proportional to the amplitude
of the spectral lines. In the same sense, we write the second
factor of eqn. (3.10a) somewhat more simply as

X cis 2mkr(f — fo) = X8(f — fo— kI

and interpret this as a ‘‘selecting factor’® which has zero value
everywhere except for those values of f which fulfil condition

EEEEN

3 2 -1 0 1 2 3 4 5—lfh)r

(3.12)

Fig. 3.4.—The selection factor.

(3.11), where it assumes the value unity (see Fig. 3.4). Thus
we write egn. (3.10)

S(f) = exp — (AN — kfPE(f — fo — kIT)

The first factor is independent of the summation index & and
represents an attenuation function of probability shape, which

has its maximum at
f= Kfo

i.c. at frequencies which have been converted in the correct
ratio x. The sharpness of this attenuation curve is reciprocal
to the sharpness of the transmission curve of the window,
measured in units of time. Thus, if the window were infinitely
broad we should obtain exact conversion of all frequencies.
But this would have the disadvantage that short signals occurring
at some definite time would be reproduced at completely in-
definite times (with an infinite number of repetitions). Con-
versely, if the window were infinitely short the attenuation
would be zero and the frequencies scattered evenly over all
possible values defined by eqn. (3.11). Thus we meet again the
fundamental uncertainty relation between frequency and time
(or rather, “epoch’) which was discussed in some detail in
Part 1. It follows immediately from previously obtained results
that the probability window is ideal in the sense that it produces
the smallest possible product of the linked uncertainties of
frequency and epoch, as defined in Part 1.* Nevertheless the
probability window is not necessarily the best from a practical
point of view. Some possible improvements will be discussed
later.

Equation (3.10a) or (3.10h) allows also a simple graphical
interpretation, which is explained in Fig. 3.5 in a numerical
example. The original frequency Sy is the ordinate; the repro-
duced frequencies f are the abscissae. Both are conveniently
measured in units 1/7, i.e. as multiples of the repetition fre-
quency. All points (f; fy) which satisfy condition (3.11) lie on
lines at 45° to the two axes, and intersect the horizontal axis at
integral values of fr. The attenuation curve

exp — (mNT(f — K fo)?

need be drawn only once, though in the Figure it has been done
twice in order to give a clear visual impression of the way in

» In Part 1 uncertainties were defined, apart from a constant factor, as the r.m.s.
deviations from the average value.

(3.10)



448

Fig. 3.5.—Diagram of frequency compression.
— 1. 1
=2, K=73

which the amplitude is distributed over the (f, f;) plane. The
spectral lines are given by the height of the attenuation curve
above the points in which a line fy = constant crosses the lines
(f — fy)T = integer, as shown in an example.

This Figure shows the action of the frequency convertor at
one glance. The correctly converted frequency f = x f; appears
in the reproduction only where a line (f — fo)T = an integer inter-
sects the line f= «f;. This condition is always fulfilled for
Jfo = 0, and for all frequencies which are multiples of

F=1/m(1 — ) (3.13)

This may be called the length of the “‘cycle of reproduction”, as
the quality of reproduction varies cyclically with this period.
If £, is an integral multiple of F the reproduction can be made
almost perfect, as the side lines can be almost entirely suppressed
if the slit number N is made sufficiently large. As can be seen
in Fig. 3.6, N = 1 is sufficient to achieve this. But this improve-

S S

2
fr |
t / ftrf;,
' i
1
fr= r
? —_—
0 ] [4 B 7 / 4
Fig. 3.6.—Diagram of frequency expansion.

N=1,k=2

ment in the reproduction of certain tones is made at the cost
of others. If N is large, not only the side lines but almost all
amplitudes near the middle of a cycle of reproduction will be
suppressed, i.e. certain notes will be missing. It is evident that
a compromise must be struck between the purity of reproduction
at the ends and at the middle of every cycle length F.

The effect of the slit number N on the quality of the repro-
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Fig. 3.7.—Influence of slit number on quality of reproduction.
K=

duction is shown in Fig. 3.7. Three cases are illustrated, all

-for an expansion ratio « = 2, and for N = 0-25, 0-5 and 1.

It may be recalled that the average number of slits before that
part of the window in which the transmission exceeds 19 is
4-3N. In each case a full cycle of reproduction is shown, with
ten equally-spaced original frequencies.

At the left, N = 0-25, the Figure shows the effect of too
small slit numbers. The reproduction is very “‘noisy,”” no fre-
quency being reproduced as an approximately pure tone, There
is little difference between the spectra of frequencies near the
middle or ends of the cycle; they are all of uniformly poor
quality.

At the right, N = 1, the Figure shows the effect of a too large
number of slits (c¢f. Fig. 3.6). The frequencies at the ends of
the cycle are reproduced nearly ideally, as practically pure tones,
but the frequencies in the middle of the cycle are almost entirely
missing in the reproduction.

The best compromise appears to be N = 0-5, shown in the
middle of the Figure. The end frequencies are still reproduced as
almost pure tones, and the intensity falls off little towards the
middle of the cycle. (The intensity is obtained by squaring the
amplitudes shown in the Figure and finding their sum. It falls,
in the middle of the cycle, to 0- 56 of the maximum.) The spectra
of the intermediate tones consists mostly of only two lines; i.e.
these will be vibrating tones, vibrating with a beat frequency of
1/r. The beats are strongest in the middle, where the two
spectral components have equal amplitudes.

It might appear at first sight that, by reducing the beat fre-
quency below any limit, the reproduction could be made perfect
to any desired degree. But there are limits to the increase of 7.
As N is fixed more or less at 0-4-0-5, 7 can be increased only
by making the window longer. The length of the window may
be now defined as the length of time 7 in which a point of the
film passes through the part of the window in which the trans-
mission exceeds 19%,. This is

T = 4-3Nsfv = 4-3N7(1 — &) (3.14)

Hence, for the optimum, N =05
7= 0-47TJ(1 — &)

If the time T is too long, the time resolution in the repro-
duction will be poor. Determining the best compromise between
time resolution and frequency reproduction is a matter for
experiment. On general grounds one would expect that the
window length T must be kept below the limit at which the ear
could begin to separate the contribution of the two or more
slits which are simultaneously before the window. For speeC.h
the optimum of T is probably about 100 millisec; for music
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probably-about 250 millisec.* Withx =2 this would make the
beat frequency 21 cfs for speech, and about 8 c¢/s for music.

1t may be noted by comparing eqns. (3.13) and (3.14) that a
simple reciprocity relation obtains between the cycle length F
and the window length 7, of the form

FT=4-3N . (3.15)

With optimum choice of N the value of this is about 2. Thus
for a window length of 100 millisec the optimally-reproduced
frequencies are spaced by about 20 cfs; for T = 250 millisec by
about 8cfs. In the reproduction the spacing will be « times
more.

The theory so far discussed was based on the assumption of
a probability window, which not only has the advantage of
mathematical simplicity, but also-gives the most advantageous
reciprocity relation between time resolution and frequency reso-
lution. But the optimum number N was found to be only
about 0-5, which means that there are on the average only about
two slits before the window. This might produce a slight but
noticeable noise in the optimally-reproduced frequencies, in
particular for f, = 0 (background). Hence it may be advan-
tageous to depart somewhat from the probability shape in order
to suppress the noise. Fig. 3.8 shows window transmission

L

Fig. 3.8.—Window shapes with zero noise for two and three slits.

shapes for two and three slits which produce no noise when
passing before an even background, as the light sum is constant
in any position. Though the mathematical theory of such
windows is very much more complicated, it is not to be expected
that they would produce essentially different results from proba-
bility windows of comparable effective width.

(3) DISTORTIONS RESULTING FROM THE COMPRESSION-
EXPANSION CYCLE

A full cycle of condensed transmission of the kind discussed

consists in compression by a factor k < 1, followed by expansion

in the ratio 1. In general, if two conversion processes are

applied in succession to a simple harmonic oscillation of fre-
quency fp. the resulting spectrum is given by

S(f) = ZkZm exp — {(aNm )L foll — wep) + ki P

S (AN f — K fo + kim) P}
S(f — fy — klTy — mjTy) (3.16)

The derivation is given in Appendix 7.2. All data N, 7, of the
first conversion have been given a suffix 1, those of the second
conversion the suffix 2. & and m are summation indexes which
run over all integral values.

The second factor is again a selection operator, which is zero
for all values of f with the exception of those where

f=fy+ kit +mlry, . (3.17)
This means that only those frequencies will appear in the
spectrum which correspond to combination tones of the original

* Note added 15th June, 1946 —Recent experiments with perfected apparatus have
confirmed the expectations as regards the optimum value of T for speech, but not for
music.
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frequency with one or the other or both of the repetition fre-
quencies 17y and 1/7,. These form, in general, a double series,
which in the particularly important practical examples to be
considered reduces to a simple series.

In what follows we will consider only pairs of conversion
processes which, on the average, reconstruct the original fre-
quencies. The condition for this is

3.18)

The ambiguity of sign expresses the fact that positive and nega-
tive frequencies are equivalent. But only the plus sign will be
considered, and it will be assumed, moreover, that both r; and
Ky are positive, Negative conversion ratios are less advanta-
geous, as for a given window length they require higher repetition
frequencies [Eqn. (3.14)]. The whole compression-expansion
cycle will be characterized by the compressionratiok,0 < k < 1,
and the expansion ratio will be assumed as 1/«.

To simplify the discussion it will be assumed that the window
length T is the same in the transmitter and in the receiver, This
corresponds to optimum conditions, as it will evidently be best
to operate at both ends with the longest permissible T, which
may have different values for speech and for music. This
means

K1K2=:|:1 ‘-

T/4-3 = Nym(1 — k) = Npm(1 — w)fke 3.19)

or 7Ty, = NofeNy . . (3.20)
A second simplifying assumption will be

7,7, =p=aninteger . . . . (3.21)

This again is an assumption which is fulfilled in the most im-
portant practical cases. In the interest of optimum transmission
the slit number will be used, in both the transmitter and
the receiver, which gives the best results in simple conversion
(N =04—0-65), and if « is the reciprocal of an integer 1,
1, % . . . the condition (3.21) will be fulfilled.

Mathematically this has the advantage that the double series
of frequencies in the reproduced spectrum

kfr + mlT,

now becomes a simple series, with period 1/7y, as in simple
conversion. We write

klry + mj7y, = (k + pm)fty =nl7y .

so that the spectral lines are now characterized by the single
suffix »n, which can be called the “order number.”” As S(f) will
be different from zero for integer values of n, and for these only,
we can now omit the selection operator S in eqn. (3.16), on the
understanding that we consider only integral values of n.
Eqn. (3.17) now becomes

f=fo+nln . (3.23)
Eliminating f by means of eqn. (3.23) and introducing the

assumptions (3.20) and (3.21) into egn. (3.16) we now obtain
the simplified formula

S(fo) = Skexp — (N[ fomy 1 — ) + K]
b e — 1)+ k— Py . (3:24)
In this sum, however, not all integral values of k are included,

but only those which are compatible with the given value of the
order n. If there are two values ko, mg which satisfy the equation

(3.22)

n=ky+ myp
all other values which satisfy it must be of the form

k=k0+l{D m=mo—l/

28
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where » is any integer. It will therefore be convenient to
introduce v as the summation index, and to make the convention
that k, is the smallest positive number in the sequence of X’s.
In other words, let & be the residue of » divided by p, or, in the
notation of the elementary theory of numbers,

(3.25)

As a further simplification we note that S(f,») is a periodic
function of f,, with a cycle length

n = ky(mod p) e e

p 1

F= (1 — %) = 7ol — k) (3.26)
and obtain
= N2 k 2
st 3o (2845
N fo | ko LK z '
T (?"}—-P— il 4 7 (3.27)

By rearranging the terms in the exponent this can be written,
finally,

N\ 2
Sifom = exp — 3(2) 72
o 2

2
. _9"_1*’2)@#&; i
ZLexp -(K F3 ,V+2p

——00

. ’ (3.28)

This formula lends itself well to graphical interpretation. In
Fig. 3.9 the ordinate is again the original frequency f;, measured

Side maxima
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Fig. 3.9.—Explanation of frequency-conversion diagrams.

in units F, and the abscissae are the reproduced frequencies f.
A line at 45° through the origin represents the correct recon-
version law, f=f,. This is the line of zero order, » = 0.
Parallel to this we draw lines through all multiples of 1/, on
the f-axis. These are the loci of all non-zero intensities. I we
imagine the amplitude S(f;,n) as a surface above the ( Jfo.f) plane,
this surface consists of a number of profiled planes, projecting
above the lines n = constant.

On the line » = 0 we have evidently a maximum of S(f5.0)
for every integral value of fy/F. These may be called the ‘‘prin-
cipal maxima,” At the side lines of higher order there will also
be maxima, but because of the probability function in front of
the sum these will be smaller. We can draw lines connecting
these maxima of different orders. We obtain a set of straight
lines connecting the points where

(3.29)

If the order n increases by one, by eqn. (3.24) kg also increases
by unity, and f,/F changes by

~ (1 — 4e)lp

JofF + kofp — nxf2p = an integer

(3.30)
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as shown in Fig. 3.9. Tt can be shown from the geometry of
Fig. 3.9 that these lines will intersect the horizontal axis at

multiples of
Pl — ) (3.31)

These lines, together with the lines n = integer, form a network
with intersections at every maximum of the spectral function
'S'(f(),n)-

Along each line n = constant, the spectral amplitude is the
same function of f,/F, apart from the shift (3.30) and the factor

exp [ — (7 N,/[p)*n?]

which varies with » but is a constant along each line. Thus it
is sufficient to compute the amplitude function once, for n = 0,
where the shift is zero and the exponential factor unity. This
function is

S(f3,0) =2 exp — 2TN [ (fol F + v)? (3.32)
This, as a function of f/F, is the sum of probability functions,
recurring at unit distance. It is shown in Appendix 7.3 that it

can be reduced to a recognized transcendental function of
analysis, the theta function fy. Fig. 3.10 shows this function

Nofe =03

1

i
0 ] I —4F 2
Fig. 3.10.—The function S(/p, 0).

for two values of the parameter N,/x. In the cases which are
of practical interest N/« is equal to or larger than unity, and
the probability functions become so sharp that their overlap is
negligible, and (3.32) consists of recurring peaks of probability
shape.

It is now possible to construct diagrams, which may be called
frequency reconversion diagrams, which show the reproduced
spectrum of any pure original tone in the same way as the
previous simple conversion diagrams. Fig. 3.11 is a first
example of such a diagram, with « = %; i.e. the cycle consists
in compression to one-half, followed by expansion to the original
range. The slit numbers are assumed as N; = N, = 4, which
was previously found to represent the most advantageous com-
promise. The diagram can be considered as three-dimensional,
with the profiles of the S-function at right angles to the (fp.f)
plane. The amplitudes are plotted in the direction f,, so that
the spectrum corresponding to any original frequency f; can be
immediately constructed by drawing a horizontal line and
plotting the heights of the S-function at the intersections with
the lines of constant order.

This is carried out for a full cycle of reproduction in Fig. 3.12,
which may be compared with Fig. 3.7 (central figure) illustrating
the result of the expansion, starting from an undistorted record.
It must be noted that 7 in Fig. 3.7 corresponds to 7, in Fig. 3.1_2,
and as 7; = 27, the minimum interval between two frequencies
in the spectrum in Fig. 3.12 is half of that in Fig. 3.7. If this
is borne in mind, it can be seen immediately that the difference
between the two cases is mainly that the two side-lines in Fig. 3.7
have now split up into two lines each (with some insignificant
satellites), and the centre of gravity of these two lines follows
very nearly the same course as in Fig. 3.7. But it has been
shown before that with « = 4, 1/7; can be made so small that
the ear can hardly, if at all, distinguish between the two tones.
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(1/7; can be made about 7-10-5 cfs for speech, and 4c/s for 0
music.) Thus the practical difference between Figs. 3.7 and 3.12 fefy- =l —

is almost negligible, and we can say that the distortions aris¢ g, 334 _ Re.expanded spectrum of ten frequencies (full cycle of

~3

0.

(=23

0.

[3,}

~N

" almost entirely in the expansion process. reproduction).

S . 5

Fig. 3.13 is a reconversion diagram for a transmission cycle Ni=No=1; =%

with « = 4, with the same slit numbers as before. Fig. 3.14
contains the reproduced spectra. This diagram approximates smaller as compared with the frequency interval between the

even more closely to Fig. 3.7, as the separation in the doublets doublets. Thus in this case the distortions arise even more
at either side of the correct reproduction has become even exclusively in the expansion process. The only essential differ-
28*
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ence as compared with the case k = % is quantitative. The
beat frequency between the doublets is now about 4/7;, twice
as large as before.

If in Fig. 3.14 the doublets are imagined as merged into one,
the lines connecting them will be almost vertical. Thus we can
interpret the operation of the frequency reconvertor in a some-
what different way. It acts very nearly like a musical instrument
with a discrete set of frequencies, which tries to imitate speech
or music as closely as possible with a limited number of tones.
It is well known that if a vowel is sung into an open piano
with the loud pedal depressed it will echo the vowel very
clearly. The frequency reconvertor performs a similar imitation,
but with the difference that its fixed frequencies are set at equal
arithmetical, not geometrical, intervals. Hence the reproduction
will tend to become more perfect at higher frequencies. At
lower frequencies there must necessarily be departures from
perfect reproduction. This becomes evident if it is remembered
that the frequency convertor does not change the rhythm or
““time-pattern’ of speech or music. In frequency language this
means that frequencies well below the audible range are repro-
duced almost with the original value, whatever the value of «.

Summing up, we can say that a frequency compressor and an
expander operating in succession produce as close a reproduction
of the original as is compatible with the uncertainty relation,
and the limit is set almost entirely by the expansion, the errors
introduced by the compression being relatively small.

(4) PROVISIONAL REPORT ON EXPERIMENTAL WORK

Theory can give a complete description of the operation of
the frequency convertor either in time language, or in frequency
language, or in the more general representation discussed in
previous communications, but it does not enable us to draw
conclusions on the quality of the reproduction.

In order to subject the theory to a first rough test, a 16-mm
sound-film projector was converted by a few simple modifica-
tions into a frequency convertor. Fig. 3.15 is a photograph of
the essential parts, and Fig. 3.16 is a schematic illustration of
the optical arrangement.

The usual single, stationary slit of the sound head was replaced
by a slotted drum which rotated round an axis passing through
the filament of the exciter lamp. The drum was of 0-005-in
steel tape, and the width of the slits was also about 0-005 in.
The condenser lens was replaced by as large a lens as the fitting
would take, with a free diameter of about 1 inch. Immediately
in front of the slotted drum a frame was arranged for the
“window.”” In the case of films with variable-area sound tracks
this was a film with graded transmission, produced by a photo-
graphic process or sprayed with an airbrush. For variable-
density films the window was cut out of black film or paper to
the desired shape. The window and the slits behind it were
imaged on the film by the same microscope objective as used in
ordinary operation, which reduced their image to about one-
quarter. Thus, allowing for optical errors, the effective slit-
width was 0-0015-0-002 in. The maximum length, 7, of the
window which could be utilized was limited both by the diameter
of the condenser lens and by the collecting system which guides
the collected light to the photocell. Measured on the film it
was about 6 mm. Sound-film moves at the standard speed of
183 mm/sec; thus the maximum T was about 32 millisec. By
running the film on the “silent’’ setting, at about 125 mmj/sec,
this could be increased to about 48 millisec. The shortness of
these times was a severe limitation of the apparatus. The
improvement between 32 and 48 millisec was so marked that it
appears to confirm the expectation that the optimum 7 is con-
siderably longer, probably 100 millisec, perhaps even more.

The slotted drum had a stepped pulley attached to it which
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Fig. 3.15.—16-mm sound-film projector converted into an experi-
mental frequency convertor,
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Fig. 3.16.—Optical arrangement in frequency convertor.

could be driven at different speeds by means of a spring belt
from another stepped pulley attached to a sprocket of the
projector. By crossing the belt the motion could be reversed.
The following values of « were tried:—

k=025 0-33 0-42 1-5 1-75 2:0 3-0 3-33

It became evident in the first experiments that the window
length of 32 millisec was insufficient for the reproduction of
music, hence the later tests were mostly restricted to the repro-
duction of speech. The uneven rotation of the drum due to
the elasticity of the spring belt was also much less objectionable
with speech than with music.

Male speech remains completely intelligible with x« = 1-5,
i.e. if the frequencies are raised by 50%;, though a baritone
changes into a high tenor. The intelligibility falls appreciably
with ¥ = 1+75, when the voice changes into a mezzo-soprano,
though even with « = 2 almost half of the words were intelligible.
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This changes a baritone into a soprano. Reduction by the
available compression ratios of 0-42 or less, on the other hand,
changed male speech into a deep growling, entirely unintelligible.

Such conversion experiments, in which the voice becomes
unnatural by frequency transposition, do not, of course, give a
test of intelligibility after reconversion to the original frequency
But two tests could be carried out immediately which
allow a first rough estimate of these effects to be made. One
test was to run the sound film at “silent” speed, i.. about
% standard speed, and apply expansion with k = 2. Speech

. restored in this way sounded almost entirely natural, and the

intelligibility was appreciably better than if the record was run

© at % speed before a stationary slit.

A second reconversion test is based on the fact that positive

and negative frequencies are indistinguishable, so that k = -+ 1
" and k — — 1 both reproduce the original frequencies of the

record. But while - 1 can be realized with a stationary slit,
— 1 means that the slits have to run in the same direction as

~ the record, with double speed, so that the relative speed of the
film against the slits is — v instead of + », i.e. the same in
. absolute value. This experiment was tried Wwith different slit

. full agreement with the theoretical expectations.

numbers, N = 0-5, 0-75, 1 and 2. The beat frequencies 1/7
were 60, 90, 120 and 240¢fs. N =05 was easily the best, in
It gave per-
fectly intelligible, though not quite natural, reproduction. The

- larger slit numbers produced strong “rer’’ sounds, which de-
* creased the intelligibility, but it is remarkable that even with a

beat frequency of 240 c/s about half the words were intelligible.

It may be seen from eqn. (3.14) that the beat frequencies at

e e 5 et

= — 1 are the same as for «= + 3. Thus this test corre-
sponded roughly to a reconversion with « = 3, at 2 window
length of 32 millisec. As it appears highly probable that the best
window length will be about three times as much, perhaps even
more, it appears that ultimately even sevenfold compression and
re-expansion can be realized without essential loss in intelligi-
bility, though with noticeable distortion.

(5 DEVICES FOR KINEMATICAL FREQUENCY
CONVERSION

So far the theory has been explained and illustrated only in
the case of a sound film, i.e. with a permanent optical record,
but evidently there are many more possibilities for realizing the
underlying general principle. ,

The essential features of the kinematical method are as follows.
A permanent or temporary record moves past a fixed window

' with suitably graded attenuation, and inside this window the

record is scanned by pick-ups which are themselves moving
with some speed different from that of the record. Hence we

- can use any sort of record which persists long enough to pass

across the window, and any sort of pick-up which does not
damage the record. The last condition excludes gramophone

records with needle pick-ups, but there are many more promising
¢ possibilities.

:

Phosphorescence, wave motion and magnetization are well-
known physical processes with “memory.”’ The last of these is
suitable for permanent as well as for temporary records, and
will be discussed later. The first two are suitable for condensed
transmission in communication channels.

Phosphorescent records can be used in very much the same
way as the permanent optical records previously discussed. The
film is replaced by a loop of film coated with phosphorescent
material, or by a coated rotating drum. This is excited by a
suitable recorder, such as a variable light source or an oscillo-
graph, after which it passes immediately into the window, where
it is scanned by moving slits or their optical equivalents. The
exponential decay of the phosphorescence can be compensated
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Behind the window the
by heating or by infra-red
be used at the receiving

by a suitable exponential wedge.
phosphorescence can be removed
irradiation. A similar apparatus can
end.*

Wave motion in fluids is an interesting substitute for a moving
record. It has been used in the Scophony system of television
in order to preserve the picture of a whole line for about 10—4 sec.
The Scophony trough contains a piezo-electric crystal at one
end and an absorber at the other. The pressure waves running
along the trough produce differences in the refractive index of
the liquid and form an equivalent of a film running at extra-
ordinary speed. It is well known that such a trough can also
imitate a succession of running slits if the crystal ‘s operated
with a series of sharp pulses.t Thus a system of two Scophony
troughs, in combination with a suitable optical system, appears
to be a practicable form of frequency convertor. But it is
not very suitable for the conversion of sound, where the window
width required is of the order of 0-1 sec, whereas Scophony
troughs, unless they are made very large, conserve the record
for only about 10—4 sec. They might perhaps be suitable for
compressed television transmission, if such a scheme should
prove practicable. This subject, however, is outside the scope
of the present paper.

The most convenient method of condensed transmission will
probably use magnetic tape or wire recorders at both ends of
the communication channel. Fig. 3.17 shows the schematic

Fig. 3.17.—Frequency convertor with magnetic tape.

arrangement. A loop of the tape or wire runs continuously
over two pulleys. Before reaching the recorder the previous
record is wiped out, by demagnetization by saturation, or—as
in some modern systems—by demagnetization with high fre-
quency. After passing under the recording edge the tape runs
over a wheel which has a number of sharp, wedge-shaped iron
spokes. 'To avoid scraping, these are embedded in non-magnetic
material; friction may be prevented by an oil film. The spoked
wheel rotates with some speed different from that of the film,
according to the « of the conversion. 1t forms the equivalent
of the rotating slits in the film scanner. The equivalent of a
window with graded transmission is formed by a suitably shaped
magnetic gap between the annular wheel and a central iron pole-
piece which carries the pick-up coil. The current induced in
the pick-up coil is amplified and transmitted through the com-
munication channel. At the receiving end the current is applied
to the recorder of a similar instrument, the only difference being
that the wheel rotates here with a different speed relative to the
film. The window length can be varied by changing the position
of the two pulleys which determine the arc of contact, or—more
advantageously—by running the motor at different speeds. This
may be necessary if it is desired to transmit both speech and
music under optimum conditions.

All systems of this kind necessarily produce a certain delay
between transmission and reception. The average delay cannot
be less than the width T of one window, plus twice the time

* A somewhat similar arrangement has been used for other purposes by Goldmark

and Hendricks, Ref. No. 3.5.
+ First suggested by F. Okolicsanyi.
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interval between the recorder and the near edge of the window.
In the transmission of speech this can probably be kept below
200 millisec.

The device shown in Fig. 3.17 could be used also for long-
playing magnetic gramophones, dictaphones and the like. The
only change is that a permanent instead of a temporary record
is used and the “wiper’’ is eliminated. But it may be mentioned
that in gramophones, sound-film apparatus and the like, in
which the aim is as high a quality of reproduction as possible,
and which must be ready to reproduce speech or music without
any change of adjustment, it does not appear practicable to
apply compression to the whole range of audible frequencies.
In such cases it may be better to divide the audio range into
two parts, say 25-1 500 ¢/s and 1 500-7 500 c¢/s. A track may
be provided for each, of which the first is an ordinary record,
whereas the second is compressed fourfold. Thus with a double-
track record it may be possible to reproduce a waveband of
7 500 ¢/s, at film speeds which would be normally sufficient only
for about 1 500 ¢/s. This application may perhaps be of interest
in sub-standard sound-film projectors.

(6) ELECTRICAL. METHODS OF CONDENSED
TRANSMISSION

It may be surmised a priori that mechanical motion is not an
"indispensable part of condensed transmission schemes. Mathe-
matically speaking, the essence of the methods previously dis-
cussed was to apply certain linear but time-dependent operators
to an original signal sy(7), and it appears very likely that these
can be produced also by suitable circuits. Tt will be shown that
these, and even more general operators, can be produced elec-

trically if suitable signal generators are available. :

Mechanical motion in the schemes previously described had
the general function of producing new frequencies from one
given original frequency. Mathematical analysis has shown that
this consists essentially in the repeated addition of the “‘repetition
frequencies’’ of the device to the original frequency. But it is
well known that addition and subtraction of frequencies can be
produced. without mechanical means, by the technique of
“mixing.”’ Hence in order to devise an electrical equivalent of
the kinematical method we must search in the first place for a
suitable method of modulation. Evidently modulation with
other than simple sine-wave carriers is necessary, as multiplica-
tion with a simple carrier produces only a shifting and duplica-
tion of wavebands.

The other essential feature of the kinematical method was a
permanent or temporary record, or more generally ‘“memory”’
of some sort. Can ordinary electrical circuits have memory?
The answer to this is that every tuned electrical system, i.e. every
system which has no unliimited flat response, has a sort of
memory, because an instantaneous impulse has a certain after-
effect. A particularly interesting special case is a system with
sharp resonance peaks which are at multiples of some funda-
mental frequency, approximating to the “selection factor’’ shown
in Fig. 3.4. Such a system would incessantly repeat the same
waveform, If the damping were appreciable, the repetitions
would become gradually less and less like the original. This
repetition is something rather close to the everyday concept of
memory.

It might appear that the simplest method of transmission with
non-constant carrier frequency is modulation with a carrier of
constant amplitude, but with a frequency which varies between
two limits sinusoidally, or according to a saw-tooth curve. If
the local oscillator of the receiver varies its frequency according
to the same law, a signal similar to the original can be expected.
This system is known as ‘‘re-entrant modulation.”” A certain
amount of saving in frequency band may be obtained with this
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system without prohibitive distortions, if the transmissiop
channel is made smaller than the total frequency sweep. But,
though this system may be the simplest to realize, its mathe.
matical treatment leads to considerable complications. There-
fore the following investigation will be based on a system of
modulation which may not be easy to realize, but which allows
comparatively simple and general mathematical discussion. Thig
will be achieved by making use once more of the unique properties
of certain signal shapes with probability envelope.
We assume a carrier of the form

00
Zk exp — Az — k7)2

—c0
If the constant A is real and positive this represents a recurrent
probability pulse. But the discussion is just as simple if we
make the more general assumption that A is a complex constant

with a positive real part

A= a2 4 jp2 (3:34)

The real part of (3.33) is, apart from a phase constant, the
sum of pulses of the form

e—@2 cos (Br)2 (3.35)

An example of such a pulse is shown in Fig. 3.18. It repre-
sents a sine wave with a linearly-varying frequency, modulated

_nﬂnﬂ UUUVW

—H U
Fig. 3.18.——Modulatmg pulse.

(3.33)

|
|
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by a probability pulse. An interesting feature of these waves is
that, by choosing the recurrent frequency conveniently, their
superposition can result in a waveshape which closely approxi-
mates to a wave of constant amplitude with a frequency varying
according to a saw-tooth curve; hence by suitable choice of the
constants it is possible to cover ‘‘re-entrant modulation”” without
its mathematical complications.

The great advantage of the waveform (3.33) or (3.35) is that
its Fourier transform is of the same type as the signal. This
allows us to evade the danger of the formulae growing more and
more complicated with every step of the analysis.

The signal s,(f) may again be a pure harmonic oscillation,
which may be written in complex form as

5o(t) = cis 2 fyt (3.36)

Only the complex modulation product of (3.36) and (3.33)
will be considered. It is well known that the real product can
be obtained from this by adding to it the product with the sign
of f, reversed, and adding to the sum its complex conjugate.
But it will not be necessary to carry out this process in order to
recognize the essential features of this method of transmission.
The complex modulation product is

s = Zk exp[— At — kr)2 + 2mjfir]

-—o%

The Fourier transform of this is

5N = J(F) e [- - fo>2zk 8 — fo— k,,)]

(3.389)

(.37
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Thus by modulation with the carrier (3.33) the spectrum has been
spread out according to a probability law on both sides of the
original frequency, while the result of the recurrence is to split
up the spectrum into sharp lines with constant frequency
interval 1/7.

We now assume that the modulated signal is passed through
a filter with a transfer admittance

exp — m2(f — f)Ho (3.39)
where ¢ is a complex constant with positive real part. If o is

real this is a “probability filter.”” The filter transmission centres
on f,, but this will not be the centre of the transmitted wave.

! As iflustrated in Fig. 3.19, the product of two probability func-
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Fig. 3.19.—FElectrical frequency conversion.

" tions is again a probability function, with a centre somewhere

between the centre of.the two factors. Hence the filtered
spectrum S(f) can again be expressed in a mathematical form
similar to (3.38) but with changed constants:—

= \/ (7)o [— ;%ifo - fcﬂ]
ol o D%

Zk Sf — fy — kjr) . (3.40)
We write now -
ollc + A =« (3.41)
and obtain the spectrum in the form
2
S(f) = \/ (3) exp [, = sy - fc)ﬂ
ex L 2 f A VR
Py gl ko (1 Rf]
Zk 3(f —fo—kID) . (34D)

This is a formula very similar to that obtained in the case of
kinematical compression, but with some differences, the most
important of which is that ¢, A and « need not be real, It is
interesting, however, to consider the special case in which o, A
and consequently also x are real and positive. In this case
eqn. (3.42) differs from eqn. (3.10a) or (3.10b) only in two points.
One is that the maximum of the amplitudes is not at f= kfy,
but at

f=rfy+ 0 — w)f,

i.e. tpe spectrum is not only compressed, but also shifted by a
certain constant amount, depending on the position of maximum
filter transmission, f,. 'The other new feature is the factor

exp[— 721 — K(fy ~ £ A (3.43)
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which is independent of f but dependent on the original fre-
quency f,. Hence different frequencies are not reproduced with
equal intensity. This effect can be reduced or eliminated by
boosting the original amplitudes in a ratio inverse to the factor
(3.43) before modulation.

We sec now that by applying in succession the operations of
boosting, modulation with repeated probability pulses, and
filtering, we can produce by purely clectrical means a compressed
spectrum identical to that obtainable by mechanical methods.
But it is important to note that only compression can be achieved
in this special case, not expansion, as k, given by egn. (3.41), is
necessarily smaller than unity.

By a rather complicated calculation, which may be omitted, it
can be shown that by a second modulation—in the receiver——
with a modulating wave of the type (3.33) it is possible to restore
the original frequency, with very much the same distortions as
in kinematical reconversion. But it is essential that both Aand ¢
should have imaginary components, i.e. both the modulating
pulses and the filter characteristic must be of the type as shown
in Fig. 3.19. Simple probability pulses and probability filters
can achieve only part of the reconversion cycle. Hence
the electrical method is better described as “‘condensation-
dilution’’ than as “compression-expansion.”  The transmitted
signal spectrum is entirely dissimilar to the original, as the
spectrum corresponding to a single original frequency is spread
out over the whole transmitted range.

At the present stage it is impossible to overlook the possi-
bilities of electrical methods of condensed transmission, which
in principle appear almost unlimited. Progress is likely to be
slow and difficult, as the mathematical treatment of pulses
different from those considered here is liable to become exces-
sively complicated, and experiments unguided by theory do not
appear very promising. But the economy which may ultimately
be achieved is likely to be large enough ‘to encourage efforts in
this direction.
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(8) APPENDICES

(8.1) The Response of Frequency Convertors to Elementary
Signals

It has been shown in Parts 1 and 2 that signal analysis in terms
of certain “‘elementary signals” has particular advantages,
especially in problems of physiological acoustics. These ele-
mentary signals are simple harmonic oscillations, modulated
with a probability pulse. Analysis in terms of these functions
contains the representation of a signal as a time function s(¢) and
as a frequency function S(f) as limiting special cases.

Elementary signals are also very suitable for describing the
operation of a frequency convertor with a probability window,
as a convertor reproduces any function of this type as the sum
of functions of the same type.
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The frequency convertor transforms an “original™ signal s,(r)
into

s() = Zk exp { - (t -;fT)zsl[Kt -1 - K)k’f]} (3.44)

This formula is obtained from eqn. (3.6) if x; is substituted
from eqn. (3.3) and the repetition interval v from eqn. (3.9).
Substitute for s,(r) a general elementary signal

et — 1,2
(JV‘T )2

The dimensionless parameter € characterizes the sharpness of
the signal. In Part 1 the effective duration of a signal has been
defined as 4/(27) times its r.m.s. duration. In the present case
this is

5;() = exp — cis 27fo(r — 1p) (3.45)

T NT
(A, = 3 (3.46)
The effective spectral width is, by the same definition,
1 €
(Af) = Vem Nr (3.47

The relation of the time interval N+ to the window width T is
given by eqn. (3.14), which combined with (3.46) gives

c— 0-41 T
1 — « (Ap),

E.g. for k = 2 € (in absolute value) is 0-41 for signals with an
effective duration equal to the window length. It is larger for
sharper signals, smaller for longer ones.

Substitution of (3.45) in eqn. (3.44) gives

5= Zkexp[— (NLT)z{(I + kT2 4 €kt — k(1 — )T — 10]2}]
X cis 2afyfit — (1 — kT — 1,] (3.49)
This can be written in the simpler form
5(t) = Zkexp[— QAr — B2+ y,] -
where the constants have the following values:—
Q2 = (1 + (N7
B = — {kr — kvl — ©) + 1] — jmfou(NDRH( + €2?)
ye=—{( + &P — (k2 — (1 — Wkt
+ 1 MNT? — 2mify[ (1 — k)t + 15]  (3.51)
The Fourier transform of the kth term of (3.50) is

va af\
Red i (—Q—> — 27iB f+ v
Applying this to (3.50) a somewhat lengthy calculation leads to

the following expression for the spectrum of the reproduced
signal :—

(3.48)

(3.50)

(3.52)

__Vmnr ()2
SO =TT & P [‘ Traa’” %)2]
.2
X cis 1——_+_—:2—K2(e2xf — for
= &kt + 12 2mkt
X Zk exp [*— a= e21<2)(3V1')2:] X ‘0151 4 €242

-

{[1 =€~ 0)lf - f} (.53
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The first factor, in the first line, can be called the attenuatiop
factor, the second the phase factor, and the third the spectra]
separation factor., If € =0 and f, =0, eqn. (3.53) simplifies
to eqns. (3.10a) and (3.1056), discussed in the text. In this specia]
case of infinitc wave trains the separation factor becomes a
“selection factor’ and the spectrum becomes a line spectrum.
In the general case the attenuation factor has the effect that
the effective spectral width of the reproduced signal becomes

1 /(1 4+ €k?)
v/ Q2m) N7

which is +/(1 + €x2)Je times the original value (3.47). If
€ is very large, ie. if the signal is very sharp, this ratio
approaches «, the conversion ratio. This means that with very
short signals the spectral envelope is reproduced accurately, on
a scale « times the original. The reproduced signal s(7) itself
consists in this case of an accurate reproduction of the original,
but on a time scale 1/« times extended, and of similar but weaker
““echoes,”” produced by repeated passage of slits across the record
of the short signal.

The opposite case arises if the signal is of long duration.
Here the spectral width, which in the original is very small, is
expanded to a value 1/4/(27) N7, whereas the envelope of the
reproduced signal s(f) approaches the original very closely.
This is the reason why the frequency convertor can reproduce
without much distortion the articulation of speech or the time
pattern of music.

Af = (3.54)

(8.2) Combination of Two Conversion Processes in Succession

Consider the conversion as described by eqn. (3.105) as a first
operation on the frequency f,. with suffix “1,”” which produces
a certain spectrum §; on an intermediate frequency scale f;

S(f) = exp [~ @NAf; — kR ]2k 8(f; — fo — Kby (3-55)
This is different from zero only if ’

fi=1 + kit (3.56)
where k is any integer. Apply now a second similar operatio_n,
with suffix “2,”* to the result of the first operation. This splits

every spectral line (3.56) into an infinity of equidistant lines,
given by
S=f+ mlr,

Eliminating the intermediate frequency f; from the two last
equations, we see that non-zero amplitudes in the final spectrum

will appear at
(3.58)

(3.57)

=+ kit + mfm,

The reduction of the spectrum to discrete lines can be con-
veniently expressed by the selection operator

Tm3k 8(f — fo — kit — mlTy) .

using again the “delta function,” which is zero everywhere except
at argument zero. We can now write the result of the two
operations as follows:—

S(f) = ZmZx exp [— (wNy7 )X, — 11£o)?]
X exp [ — (wNT)Af — x2f))?]
X 8(f — fo— klv) — mit)

Egn. (3.16) is obtained from this by substituting the values of
f; and f from egns. (3.56) and (3.57).

(3.59)

(3.60)



% GABOR: THEORY OF COMMUNICATION

Any spectral line as given by eqn. (3.58) can be characterized
by two integers ko and mg

f=fo+ kolmy + mol7s

If 7, and 7, are incommensurable there will be no other integral
values which satisfy this equation; hence only a single term of
the sum (3.60) will contribute to the amplitude of this frequency.
4 But if 7, and 7, are in a rational relation

3.61)

Ty = pla (3.62)

“ where p and g are relative primes, there will be an infinity of
‘integer solutions of (3.61) of the form

k:k0+Vp

m=my— Vv,

(3.63)

where v is any integer. But if the same window width is used
‘in both conversion processes, and if the speed ratios are pro-
; duced by toothed wheels, by eqn. (3.20) 7,/7, is bound to be
rational. This means that the line spectrum (3.58) will repeat
- itself with a period

plvy = ql7, (3.64)

' To avoid unessential complications the discussion in the text is
i restricted to the case g = 1.

" (8.3) Reduction of the Recurrent Exponential Pulse to Theta
: Functions

In eqn. (3.28) for S(f, n) introduce the following notations:—

n fo

2 F& 2: 2. iﬂ= 3
‘(K> S L i I (3.65)
This enables us to write it in the form

S(f, n) = Sy, p) = e~ Ty —t U Fvu (3.66)
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The theta function 8, as defined in analysis* is

Ooo(z, 7) = zve}'ﬂ(vz1'+2vz) (3.67)

or, with imaginary arguments,
Oool 72, J7) = e"‘lz/TZ\ae"m’("“"Z/T)z (3.68)

-—0
Now put mr=02, zltr=y—p (3.69)
This gives

o2 o2 2
Boo[i;(y — s i;] = e“(y'“>2zve—°‘”(V+y—u)” (3.70)
Dividing this by egn. (3.66) we obtain
2
S(y’ F’) = e—a2[(y—u)2+u2]000[j_a. (y — ‘U'), ]g:l
T P

and finally, substituting the original values for «, p and y,

Sty my = 2 (@254 G

o ne(2) (8 + b= 1) ()] o

Tables of theta functions may be found in Jahnke and Emde,
“Tables of Functions® (Dover Publications, New York, 1945)
and in other works.

3.71)
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DISCUSSION ON

- “RADIO

MEASUREMENTS IN THE DECIMETRE AND CENTIMETRE WAVEBANDS”*

: NORTH-WESTERN RADIO GROUP, AT MANCHESTER, 18TH JANUARY, 1946

. Mr. R. Cooper: The authors use the terms (a) accuracy, ()
" absolute accuracy, (¢) reading accuracy, (d) setting accuracy.
. The accuracy of a measurement is determined by the deviation
: of the measurement from the true value of the quantity measured.
" This deviation is due to errors which occur in making the
various instrument settings, readings and calibrations necessary
to make the measurement. Will the authors state the sources
. of error considered in defining each of the above variations of
" jnstrument accuracy? In the case of the calorimeter method of
. measuring high powers the authors state that the “absolute
¢ accuracy” of the method is of the order 57;. I presume this
© value pertains to the equipment used by the authors and is not
a statement of the limit of accuracy of the method. I am
¢ particularly interested in this system and would appreciate a
statement of the sources and magnitudes of the various errors

which contribute to the 5% “absolute accuracy.”
In considering the measurement of high powers the authors do

S ot

i * Paper byR.J. CLAYTON, J. E. HOULDEN, H. R. L. LAMONT, and W. E. WILLSHAW
- (see 1946, 93, Part 10T, p. 97).

bt 7

not mention that it is sometimes necessary to feed the energy
into the calorimeter in the form of recurrent impulses. Under
these conditions high electrostatic stresses may be set up in the
system. To what extent does this consideration influence the
design of the resonant-chamber calorimeter (Fig. 14)?

A point having bearing on the design of calorimeters for
operation below 10 cm wavelength is the fact that water exhibits
an absorption band in this region and its dielectric constant is a
function of temperature. Consequently mismatches may be
caused by excessive temperature rises. This effect is likely to be
pronounced in calorimeters containing a considerable volume of
water such as that shown in Fig. 15. I have found a calorimeter
of the type shown in Fig. 16 to be free from the effect.

I agree in general with the authors’ remarks concerning the
design of standing-wave detectors. However, 1 prefer to limit
the length of the slot to about three-quarters of a wavelength, and
I judge the performance of standing-wave detectors from curves
obtained with an approximately correct termination and with a
highly reflecting short-circuit termination. Can the authors give



