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ABSTRACT

We have recently introduced a class of non-quadratic Hedmaed
regularizers as a higher-order extension of the total trarigTV)

functional. These regularizers retain some of the mostréble
properties of TV while they can effectively deal with theistase
effect that is commonly met in TV-based reconstructions.this

work we propose a novel gradient-based algorithm for theiefft
minimization of these functionals under convex constmiRurther-
more, we validate the overall proposed regularization &anork for
the problem of image deblurring under additive Gaussiaeaoi

Index Terms— Linear inverse problems, image restoration,
Hessian matrix norms, mixed-norm regularization.

1. INTRODUCTION

Artifacts degrading the quality of recorded images are tgain
caused by blurring, which is a perturbation due to the imggiro-
cess (i.e. diffraction, aberrations etc.) and random ntbiaeis in-
trinsic to the detection process. This image degradationof&n
be a major obstacle preventing image analysis and infoomagtx-
traction. To alleviate these effects, image restorationssve as a
desirable pre-processing technique.

Image deblurring belongs to the general family of inversebpr
lems and it amounts to estimating an imafjérom the measure-

mentsy. The most-commonly used image-observation model in-

volves linear measurements and can be formulated as

y=Af+w, @

where A is a linear blur operator and is the measurement noise.
The recovery off from y is anill-posed problem[1], due to the
presence of noise and the blurring operatbithat is usually ill-
conditioned or non-invertible. To obtain a reasonablenesti of
f one must thus reformulate the image restoration problenaky t
ing into account the image formation and acquisition pre@sswell
as any available prior information about the propertieshefitnage
to be restored.

A common approach for restoringis to form an objective func-
tion which quantifies the quality of a given estimate and hasarm

I (f) = Jaaa(f) + TR(f) - @)

The first term is known adata fidelityand measures the consistency
between the estimation and the measurements, while thacdece

is the regularizationterm that constrains the set of plausible solu-

tions. Theregularization parameter > 0 balances the contribution
of the two terms. Image deblurring can then be cast as thenizat
tion of (2).
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A parameter that needs special treatment in this probleToe s
significantly affects the quality of the restored image his torm of
the regularizer to be chosen. Several regularization agpes have
been proposed for image deblurring, with a state-of-thenathod
based on minimizing the total-variation (TV) semi-norm.[R$ suc-
cess and wide use for the past two decades can be mainlytttib
to its ability to produce results with well-preserved andrghedges.
In addition, TV is convex, thus permitting the design of it op-
timization methods.

Despite the popularity that TV regularization enjoys, it een
widely reported (cf. [3] for instance) that if it is appliednder the
presence of noise, to signals not necessarily piecewisgamrthen
it leads to the well-knowrstaircaseeffect. Indeed, TV favors van-
ishing first-order derivatives and thus yields solutionbbeging to
the class of piecewise-constant functions. This effectmhighly
undesirable especially in applications such as biomedisabing
where image interpretation can be severely obstructed.

To overcome this spurious effect induced by the TV norm,gher
is a growing interest in the recent literature for regulatian tech-
niques involving higher-order differential operators {8,5]. The
motivation behind this attempt is to potentially restoreidew class
of images avoiding staircase effects while preserving ensttarp-
ness. These regularizers often involve second-order tyerade-
cause vanishing second-order derivatives lead to pieeelvisar re-
sults that better fit smooth intensity changes.

In this paper, in Section 2 we briefly review the class of sdeon
order regularizers that we recently introduced in [6] as»daresion
of TV. In Section 3 we propose a projected-gradient methothiair
efficient minimization under additional convex constrainthen in
Section 4, we perform a comparative performance study,idgens
ing image-deblurring experiments, and show that our remdes
are well-suited for restoring a larger class of images thameiy
piecewise-constant.

2. SECOND-ORDER REGULARIZATION

The TV norm, assuming that images smooth, is defined as

V() = [ 195 G0l . @)
Q

where||V f||,, is the Euclidean norm of the image gradient &hd

R2. As we observed in [6], and one can easily verify by direct cal

culations, the 2-D TV functional can be equivalently writtes

1
V) = 17 [ 100 0 my (@

where h (q) ||cos (G)HLq([O,Qﬂ) and Dy is the first direc-

tional derivative in the direction of the unit-norm vectap =
(cos @, sin @), defined as f = (Vf, us). Therefore, according



Table 1. Definition of Continuous Differential Operators.

U = (Ouz — Oyy, 204y) V= (amv \/éaryv 81/1/)

to (4), TV can be interpreted as a mixéd-L, norm where the
Ly-norm acts on the image domainy while the L,-norm acts on
the angular orientation of the directional derivatiges [0, 27].

In two dimensions, a natural way to compute second deragitiv

is to use the Hessian operattf; = (;z: ch:z) where fi; (x)

% f(x). While the use of second derivatives for constructing

a regularizer is straightforward in the 1-D setting, there plenty
of possible choices in 2-D. To obtain second-order regzeasi that
promote invariances and at the same time qualify as valiehsions
of TV, we recently introduced in [6] a novel class that exteBefini-
tion (4) to the second-order case. This is accomplisheddrgasing
the order of differentiation using second-order bidirecsl deriva-
tives, and by defining our second-order regularizers as

1
RU) = 77 [ 198.0F 09,66 ©
whereS = [0, 271] x [0, 27] and O 4 is the second directional
derivative in the directions dictated by the anglkesand ¢, de-
fined as O ,f (x) = Do (Dsf)(x) = ujHy(x)ve, with
Vg (cos ¢, sin®). Note that contrary to the 2-D TV, the re-
sulting functionals in (5) are not equivalent for differefioices of

Regarding the second regularizer, since the Frobenius abam
matrix is equal to the Euclidian norm of its vectorized versiwe
equivalently write (7) as

Re(f) = [ V£ 60l 0x. 12)
Q

where the differential operatdfis defined in Table 1. This last form

is more preferable for the description of the minimizatidgoaithm

we propose in Section 3.

3. OBJECTIVE FUNCTION MINIMIZATION
3.1. Majorization-Minimization Approach

Hereafter, we will consider the discrete formulation of the
image-restoration problem and we will use bold-faced symbm
distinguish between the continuous and discrete domairssum-
ing Gaussian noise degrading the measurements, the dataster
guadratic and the objective function reads as

J (f) (13)

1
Sl —AfIZ R (),

where A € RM*¥ s the convolution matrix describing the blur-
ring operation, ang/ ,f € R are theN-dimensional rasterized
observed and unknown images, respectively, Wth= m x n.

We minimize (13) following a majorization-minimization (M)

Lg-norms. In this paper, we consider two members of this familyapproach (cf. [7, 8, 9] for instance). Specifically, we uppeund

that arise by employing the mixed normis- L., andL-L.. Inter-
estingly, as we prove in [6], these regularizers involve ghectral
and the Frobenius matrix-norms, respectively, and are etbfis:

Rs() = [ 070 (9], oy = [ Ity Gl @)

RF(f):%A||D§,¢f(X)||L2(S) dx:/QH”H,f X)) dx. (7)

It is also worthwhile to note that these regularizers arevernho-
mogeneous, rotation and translation invariant.
The Hessian spectral norm can be alternatively defined as

I#s GOl = masg (A ()] ®)

where)\; f (x) are the eigenvalues of the Hessian matrix aft co-
ordinatesx. These two eigenvalues are given by

Naf () = 2 (AF G = [Uf (), ) ©)

where the associated differential operators are definedaloheTL.
Using the identity,

max (|a + B, | = f]) = |a| + 5,VB > 0, (10)

and combining it with (6), (8) and (9), we finally express cegular-
izer involving the spectral norm of the Hessian matrix, ireasier-
to-minimize form

1

5 [ (A7 G+ s (o)) e

Rs(f) = (11)
Based on (11) we can also interpret this functional as anligqua
weighted compound regularizer whose first term corresptmtise

L1-norm of the Laplacian.

the data term of our objective function using the followingjorizer

Q(f,f0) = 5 lly — AFI +d(f,fo) (14)

where d (f,fo) = 0.5(f—fo)" [aI - ATA] (f—f). In or-
der Q (f,fy) to be a valid majorizer, we need to ensure that
d(f,fo) > 0, Vf # fo, with equality iff f = f,. This is satisfied if
ol — ATA is positive definite, which implies that > ||ATA]|.
The upper-bounded version of (13) can then be expressed as

J (f7 fO)

Q(£,£) + 7R (f)
= SlE—all+rR(E) +e,

(15)

wherez = fo + a 'AT (y — Afy) andc is a constant. Then we
iteratively minimize (15) w.r.f, settingf, to the previous iteration’s
solution. As we can see, the new objective function doesnvoive
the term|| Af||2 anymore, which turns the minimization task into a
much simpler one: the minimizer of (15) is the solution of aale-
ing problem. Since the convergence of this method can be stow
speed it up we employ the FISTA algorithm [9], which exhilsitste-
of-the-art convergence rates. Description of our apprasimg the
monotonic version of FISTA [10] is given in Algorithm 1.

3.2. Denoising Step

The MM formulation of (13) relies on solving the problem

argmin = || — 2|2 + TR (f) | (16)
fec 2

whereC is a convex set representing additional convex constraimts
the solution such as box or positivity constraints, &adf) is one

of the two studied regularizers. First we describe the psegdanini-
mization algorithm for the regularizer involving the Hessispectral



Algorithm 1 : Image reconstruction under Hessian-based
norm regularization based on MFISTA.
Input:y, A, 7>0,a > ||[ATA|.
Initialization: vo = fo, to = 1, co = J (fo).
while stopping criterion is not satisfiedo
sn < denoi se (v, +a AT (y — Av,,), I);

144/14+4t2

2

)

tnt1
Cnt1 =T (sSn);

if cny1 > ¢, then
Cn+1 = Cn,
f"+1 < fn;
Vip+tl — fn +
else

fry1 < s,
Vg1 ¢ Sp + <%) (sn — £);
end

n<+<n+1;

end
return f,,;

Ln (Sn - fn);

tnt1

matrix-norm and then we show how it differentiates for theenione
involving the Hessian Frobenius matrix-norm.

. . weB
As we already showed in Sec. 2, we can decompose the Hessian ©

spectral matrix-norm into a linear combination of two veaiorms.
Thus, we write (16) as

.1 T
argmin = [If — 2|3 + 7 (I Al + U], ,) . @D
fec

where||lull, , 2 SN, |lul, is the ¢1-¢> mixed-norm ofu €

RN*2, By introducing the differential operatafA. (see Table 1
for its continuous definition) we write (17) in the equivaléorm

1 T
argmin 3 £ — 23+ 2 (1A, + [0t ) - (18)
fec
Since|| ||, , is the dual norm off ||, , [11] we express the latter as
||uH1,2 £ glg}é (w, u), (19)
whereB = {w = (w1,...,wn)||lwkll, <1,Vk=1,...,N}is
the {-£2 unit-norm ball. Using (19) we rewrite (18) as

wo €

. 1 2 T
ar%eréun 3 If — =5 + 3 (ul:fll%}é (w1, Acf) + max (wa, Uf))

1
= argmin = ||f —z||3 + L max <Azw1 + U ws, f> , (20)
fec 2 B

2 wi,w2€

whereT denotes the transpose operation. This naturally leads us to

the following minimax problem

pipmay £ 6.) @y
where
£(Ew) = E =23+ 7 (Ulw, £) | (22)

with w = [w] wHT andU, = 0.5 [A] UT}T. Since the function

L (f,w) is strictly convex inf and concave inv we can exchange
the order of the minimum and maximum [12] and get

- (- ruls)|,

2
3 el = 5 [l - rUTe - @3

1
max min —
weB feC 2

Algorithm 2 : denoi se(z,7) — denoising algorithm under
Hessian-based norm regularization. For the differentlezgu
izers¥ = U, (spectral norm) o = V (Frobenius norm).
Input: z, ¥, 7 > 0,7 > || €T¥|[, Pc.
Initialization: vi = 0, t; = 1.
Output: £* — approximate optimal solution of (16).
while stopping criterion is not satisfiedo
wn — PB (vn + ,%T\IIPC (z - T\IJTVn)>;
14+4/1+482 |
—
Vn+t1 —wp + (;’;:11) (wn - wn—l);
n+<n+1;
end
return Pe (z — 7¥Twy,_1);

tnt1 <

The inner minimization problem is solved exactly by
f="Pc (z — TUZUJ) , (24)

leading to the dual formulation

2
max <g (w) = % HPC (z - TUZL«)) - (z — TUZQ))HQ
1, » 1 S
+5 215 - 5 |2 ran]L), (25)

whereP¢ is the orthogonal projection onto the convex §etCon-

trary to our initial problem, the dual one is smooth and itdignt
Vg (w) = 7UaPe (z - TUI,w) (26)

is well defined. To obtain (26) we use the property that theligra

ent of a functions (w) = |lw — Pc (w)|3 is equal toVs (w) =

2 (w — Pc (w)) [10]. The solution of (17) can thus be obtained by

first solving the dual problem (25) and then using (24). Sif&®

has not a closed-form solutiofU(, has not a stable inverse), we

employ Nesterov's iterative method [13] for smooth funotcand

the operatofP that returns the orthogonal projection onto the con-

vex setBB. This method exhibits a state-of-the-art convergence rate

O (=), wheren is the number of iterations. The solution of (16)

under the Hessian Frobenius-norm regularizer is obtaimeaactly

the same way, using formulae (21)—(26) and repladihgwith V,

which is the discretized version ®f. Algorithm 2 describes in de-

tail the proposed denoising approach for both the speairal-the

Frobenius-norm-based regularization.

4. EXPERIMENTS

To validate the effectiveness of the studied second-oedprar-
ization framework and the efficiency of the proposed minaticn
algorithm, we provide experimental results for the taskidge de-
blurring. We compare our results with TV [10] for a set of four
standard test-images. In our experiments we use two diff@@nt
spead function§psf), a uniform and a Gaussian one, both of support
9 x 9. The standard deviation for the Gaussian psfiis= 6. In Ta-
ble 2 we provide numerical results in terms of ISNR for thr&NRs
(BSNR = var[Af] /%) corresponding to different levels of Gaus-
sian noise. In addition, since the intensities of the odfjimages
are in the range db 1], we constrain the solutions in all cases to lie
in the convex se€ = {f |f;, € [01], Yk =1,..., N}. For the sake
of fairness among comparisons, the reported results forregilar-
izer are obtained using the individualized regularizaparametet-



Table 2. ISNR results for the three regularizers under compariso

Image/ Uniform blur: 9 x 9 || Gaussian blur: 9 x 9
BSNR TV | Spec. | Frob. || TV [ Spec. | Frob.
- |20dB || 3.83 | 3.86 | 3.98 || 3.45 | 3.49 3.59
é 25dB || 4.82 | 4.86 | 5.01 || 4.40 | 4.45 4.58
30dB || 599 | 5.96 | 6.13 || 5.54 | 5.52 | 5.67

;:: 20dB || 3.561 | 4.21 | 4.28 || 3.21 | 3.92 4.00
O | 25dB || 432 | 5.06 | 5.15 || 3.95 | 4.72 4.81
& |30dB || 543 | 6.15 | 6.25 || 5.05 | 5.76 5.87
£ |20dB || 5.19 | 6.45 | 6.54 || 5.00 | 6.22 6.31
E, 25dB || 6.55 | 7.70 | 7.79 || 6.30 | 7.38 7.47
£ ]30dB || 8.07 | 885 | 8.92 || 7.82 | 849 | 8.56
s |1 20dB || 3.79 | 3.94 | 4.04 || 3.54 | 3.70 3.80
E 25 dB || 4.38 | 4.58 | 4.69 || 4.06 | 4.28 | 4.39
30dB || 5.30 | 5.48 | 5.60 || 491 | 5.12 5.24

that gives the best ISNR performance. For the discretizaifcdhe
second-order differential operators, we use forward fulifferences
with Neumann boundary conditions (reflexive boundarie&)alfy,
regarding the minimization of the objective functions, wseuhe
proposed algorithm and the method in [10] for our seconeoreg-
ularizers and TV, respectively, with a stopping criterieh ® either
reaching a relative normed differenceldf° between two succes-
sive estimates, or a maximum of 100 MFISTA iterations. Wel&e
inner iterations to solve the corresponding denoising lprab

With reference to the results of Table 2, the reconstruatiwter
our second-order regularization framework, using eitheispectral-
or the Frobenius-norm, yields quantitatively better resstitan TV
for the majority of images and different combinations ofspahd
noise levels. The efficacy of our approach can also be visapipre-
ciated from the representative deblurring example showrign 1.
In this example, we can ascertain that while TV regulargzatntro-
duces staircase artifacts mixing structural details ofithege, our
solutions avoid this problem without compromising the gyabf
the reconstruction.

5. CONCLUSIONS

We have proposed an efficient constrained gradient-based mi
imization algorithm for image restoration under our rebeifrttro-
duced second-order regularization framework. We havedsswn-
strated that our regularizers are more adapted than TV éocltdss
of images that consist mostly of ridges and smooth tramsition-
tensities, both from a qualitative and quantitative poihtiew. In
particular, our regularizers circumvent staircase effastwell fine-
scale-structure deformations that occur with TV and at émeestime
can restore edges in a satisfactory way.
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