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ABSTRACT

We have recently introduced a class of non-quadratic Hessian-based
regularizers as a higher-order extension of the total variation (TV)
functional. These regularizers retain some of the most favorable
properties of TV while they can effectively deal with the staircase
effect that is commonly met in TV-based reconstructions. Inthis
work we propose a novel gradient-based algorithm for the efficient
minimization of these functionals under convex constraints. Further-
more, we validate the overall proposed regularization framework for
the problem of image deblurring under additive Gaussian noise.

Index Terms— Linear inverse problems, image restoration,
Hessian matrix norms, mixed-norm regularization.

1. INTRODUCTION

Artifacts degrading the quality of recorded images are mainly
caused by blurring, which is a perturbation due to the imaging pro-
cess (i.e. diffraction, aberrations etc.) and random noisethat is in-
trinsic to the detection process. This image degradation can often
be a major obstacle preventing image analysis and information ex-
traction. To alleviate these effects, image restoration can serve as a
desirable pre-processing technique.

Image deblurring belongs to the general family of inverse prob-
lems and it amounts to estimating an imagef from the measure-
mentsy. The most-commonly used image-observation model in-
volves linear measurements and can be formulated as

y = Af +w , (1)

whereA is a linear blur operator andw is the measurement noise.
The recovery off from y is an ill-posed problem[1], due to the
presence of noise and the blurring operatorA that is usually ill-
conditioned or non-invertible. To obtain a reasonable estimate of
f one must thus reformulate the image restoration problem by tak-
ing into account the image formation and acquisition process as well
as any available prior information about the properties of the image
to be restored.

A common approach for restoringf is to form an objective func-
tion which quantifies the quality of a given estimate and has the form

J (f) = Jdata(f) + τR (f) . (2)

The first term is known asdata fidelityand measures the consistency
between the estimation and the measurements, while the second one
is the regularization term that constrains the set of plausible solu-
tions. Theregularization parameterτ ≥ 0 balances the contribution
of the two terms. Image deblurring can then be cast as the minimiza-
tion of (2).
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A parameter that needs special treatment in this problem, since it
significantly affects the quality of the restored image, is the form of
the regularizer to be chosen. Several regularization approaches have
been proposed for image deblurring, with a state-of-the artmethod
based on minimizing the total-variation (TV) semi-norm [2]. Its suc-
cess and wide use for the past two decades can be mainly attributed
to its ability to produce results with well-preserved and sharp edges.
In addition, TV is convex, thus permitting the design of efficient op-
timization methods.

Despite the popularity that TV regularization enjoys, it has been
widely reported (cf. [3] for instance) that if it is applied,under the
presence of noise, to signals not necessarily piecewise constant then
it leads to the well-knownstaircaseeffect. Indeed, TV favors van-
ishing first-order derivatives and thus yields solutions belonging to
the class of piecewise-constant functions. This effect canbe highly
undesirable especially in applications such as biomedicalimaging
where image interpretation can be severely obstructed.

To overcome this spurious effect induced by the TV norm, there
is a growing interest in the recent literature for regularization tech-
niques involving higher-order differential operators [3,4, 5]. The
motivation behind this attempt is to potentially restore a wider class
of images avoiding staircase effects while preserving image sharp-
ness. These regularizers often involve second-order operators, be-
cause vanishing second-order derivatives lead to piecewise-linear re-
sults that better fit smooth intensity changes.

In this paper, in Section 2 we briefly review the class of second-
order regularizers that we recently introduced in [6] as an extension
of TV. In Section 3 we propose a projected-gradient method for their
efficient minimization under additional convex constraints. Then in
Section 4, we perform a comparative performance study, consider-
ing image-deblurring experiments, and show that our regularizers
are well-suited for restoring a larger class of images than merely
piecewise-constant.

2. SECOND-ORDER REGULARIZATION

The TV norm, assuming that imagef is smooth, is defined as

TV(f) =

∫

Ω

‖∇f (x)‖2 dx , (3)

where‖∇f‖2 is the Euclidean norm of the image gradient andΩ ⊂
R

2. As we observed in [6], and one can easily verify by direct cal-
culations, the 2-D TV functional can be equivalently written as

TV(f) =
1

h (q)

∫

Ω

‖Dθf (x)‖Lq([0, 2π]) dx, (4)

where h (q) = ‖cos (θ)‖
Lq([0, 2π]) and Dθ is the first direc-

tional derivative in the direction of the unit-norm vectoruθ =
(cos θ, sin θ), defined as Dθf = 〈∇f, uθ〉. Therefore, according



Table 1. Definition of Continuous Differential Operators.

∆ = ∂xx + ∂yy ∆e = (∂xx + ∂yy, 0)

U = (∂xx − ∂yy, 2∂xy) V =
(

∂xx,
√

2∂xy, ∂yy

)

to (4), TV can be interpreted as a mixedL1-Lq norm where the
L1-norm acts on the image domainΩ, while theLq-norm acts on
the angular orientation of the directional derivative,θ ∈ [0, 2π].

In two dimensions, a natural way to compute second derivatives

is to use the Hessian operatorHf =
(

fxx fxy

fyx fyy

)

wherefij (x) =

∂2

∂i ∂j
f (x). While the use of second derivatives for constructing

a regularizer is straightforward in the 1-D setting, there are plenty
of possible choices in 2-D. To obtain second-order regularizers that
promote invariances and at the same time qualify as valid extensions
of TV, we recently introduced in [6] a novel class that extends Defini-
tion (4) to the second-order case. This is accomplished by increasing
the order of differentiation using second-order bidirectional deriva-
tives, and by defining our second-order regularizers as

R(f) =
1

h2 (q)

∫

Ω

∥

∥D2
θ,φf (x)

∥

∥

Lq(S)
dx , (5)

whereS = [0, 2π] × [0, 2π] and D2
θ,φ is the second directional

derivative in the directions dictated by the anglesθ and φ, de-
fined as D2θ,φf (x) = Dθ (Dφf) (x) = uT

θHf (x)vφ, with
vφ = (cos φ, sinφ). Note that contrary to the 2-D TV, the re-
sulting functionals in (5) are not equivalent for differentchoices of
Lq-norms. In this paper, we consider two members of this family
that arise by employing the mixed normsL1-L∞ andL1-L2. Inter-
estingly, as we prove in [6], these regularizers involve thespectral
and the Frobenius matrix-norms, respectively, and are defined as:

RS(f) =

∫

Ω

∥

∥D2
θ,φf (x)

∥

∥

L∞(S)
dx =

∫

Ω

‖Hf (x)‖2 dx , (6)

RF(f) =
1

π

∫

Ω

∥

∥D2
θ,φf (x)

∥

∥

L2(S)
dx =

∫

Ω

‖Hf (x)‖
F

dx . (7)

It is also worthwhile to note that these regularizers are convex, ho-
mogeneous, rotation and translation invariant.

The Hessian spectral norm can be alternatively defined as

‖Hf (x)‖2 = max
i=1,2

(|λif (x)|) , (8)

whereλif (x) are the eigenvalues of the Hessian matrix off at co-
ordinatesx. These two eigenvalues are given by

λ1,2f (x) =
1

2

(

∆f (x)± ‖Uf (x)‖2

)

, (9)

where the associated differential operators are defined in Table 1.
Using the identity,

max (|α+ β| , |α− β|) = |α|+ β ,∀β ≥ 0 , (10)

and combining it with (6), (8) and (9), we finally express our regular-
izer involving the spectral norm of the Hessian matrix, in aneasier-
to-minimize form

RS(f) =
1

2

∫

Ω

(

|∆f (x)|+ ‖Uf (x)‖2
)

dx . (11)

Based on (11) we can also interpret this functional as an equally
weighted compound regularizer whose first term correspondsto the
L1-norm of the Laplacian.

Regarding the second regularizer, since the Frobenius normof a
matrix is equal to the Euclidian norm of its vectorized version, we
equivalently write (7) as

RF(f) =

∫

Ω

‖Vf (x)‖2 dx , (12)

where the differential operatorV is defined in Table 1. This last form
is more preferable for the description of the minimization algorithm
we propose in Section 3.

3. OBJECTIVE FUNCTION MINIMIZATION

3.1. Majorization-Minimization Approach

Hereafter, we will consider the discrete formulation of the
image-restoration problem and we will use bold-faced symbols to
distinguish between the continuous and discrete domains. Assum-
ing Gaussian noise degrading the measurements, the data term is
quadratic and the objective function reads as

J (f) =
1

2
‖y −Af‖22 + τR (f) , (13)

whereA ∈ R
N×N is the convolution matrix describing the blur-

ring operation, andy , f ∈ R
N are theN -dimensional rasterized

observed and unknown images, respectively, withN = m× n.
We minimize (13) following a majorization-minimization (MM)

approach (cf. [7, 8, 9] for instance). Specifically, we upperbound
the data term of our objective function using the following majorizer

Q (f , f0) =
1

2
‖y −Af‖22 + d (f , f0) , (14)

where d (f , f0) = 0.5 (f − f0)
T
[

αI−ATA
]

(f − f0) . In or-
der Q (f , f0) to be a valid majorizer, we need to ensure that
d (f , f0) ≥ 0, ∀f 6= f0, with equality iff f = f0. This is satisfied if
αI − ATA is positive definite, which implies thatα >

∥

∥ATA
∥

∥.
The upper-bounded version of (13) can then be expressed as

J̃ (f , f0) = Q (f , f0) + τR (f)

=
α

2
‖f − z‖22 + τR (f) + c , (15)

wherez = f0 + α−1AT (y −Af0) andc is a constant. Then we
iteratively minimize (15) w.r.tf , settingf0 to the previous iteration’s
solution. As we can see, the new objective function does not involve
the term‖Af‖22 anymore, which turns the minimization task into a
much simpler one: the minimizer of (15) is the solution of a denois-
ing problem. Since the convergence of this method can be slow, to
speed it up we employ the FISTA algorithm [9], which exhibitsstate-
of-the-art convergence rates. Description of our approachusing the
monotonic version of FISTA [10] is given in Algorithm 1.

3.2. Denoising Step

The MM formulation of (13) relies on solving the problem

argmin
f∈C

1

2
‖f − z‖22 + τR (f) , (16)

whereC is a convex set representing additional convex constraintson
the solution such as box or positivity constraints, andR (f) is one
of the two studied regularizers. First we describe the proposed mini-
mization algorithm for the regularizer involving the Hessian spectral



Algorithm 1 : Image reconstruction under Hessian-based
norm regularization based on MFISTA.

Input : ②,❆, ✜ ❃ ✵, ☛ ❃
✌
✌❆❚❆

✌
✌.

Initialization: ✈� ❂ ❢�, t� ❂ ✶, ❝� ❂ ❏ ✭❢�✮.
while stopping criterion is not satisfieddo
s♥ ✥ denoise

✁
✈♥ ✰ ☛

✂✄❆❚ ✭② ☎❆✈♥✮ ❀
✆
✝

✞
;

t♥✟✄ ✥
✄✟
♣
✄✟✹✠✷✡
☞ ;

❝♥✟✄ ❂ ❏ ✭s♥✮;
if ❝♥✟✄ ❃ ❝♥ then
❝♥✟✄ ❂ ❝♥;
❢♥✟✄ ✥ ❢♥;
✈♥✟✄ ✥ ❢♥ ✰

✠✡
✠✡✍✎
✭s♥ ☎ ❢♥✮;

else
❢♥✟✄ ✥ s♥;

✈♥✟✄ ✥ s♥ ✰

✏
✠✡✂✄
✠✡✍✎

✑

✭s♥ ☎ ❢♥✮;

end
✒ ✥ ✒✰ ✶;

end
return ❢♥;

matrix-norm and then we show how it differentiates for the other one
involving the Hessian Frobenius matrix-norm.

As we already showed in Sec. 2, we can decompose the Hessian
spectral matrix-norm into a linear combination of two vector norms.
Thus, we write (16) as

argmin
f∈C

1

2
‖f − z‖22 +

τ

2

(

‖∆f‖1 + ‖Uf‖1,2

)

, (17)

where‖u‖1,2 ,
∑N

k=1 ‖ui‖2 is the ℓ1-ℓ2 mixed-norm ofu ∈

R
N×2. By introducing the differential operator∆e (see Table 1

for its continuous definition) we write (17) in the equivalent form

argmin
f∈C

1

2
‖f − z‖22 +

τ

2

(

‖∆ef‖1,2 + ‖Uf‖1,2

)

. (18)

Since‖ ‖
∞,2 is the dual norm of‖ ‖1,2 [11] we express the latter as

‖u‖1,2 , max
ω∈B

〈ω, u〉 , (19)

whereB =
{

ω = (ω1, . . . ,ωN ) | ‖ωk‖2 ≤ 1, ∀k = 1, . . . , N
}

is
theℓ∞-ℓ2 unit-norm ball. Using (19) we rewrite (18) as

argmin
f∈C

1

2
‖f − z‖22 +

τ

2

(

max
ω1∈B

〈ω1, ∆ef〉+ max
ω2∈B

〈ω2, Uf〉

)

= argmin
f∈C

1

2
‖f − z‖22 +

τ

2
max

ω1,ω2∈B

〈

∆
T

eω1 +U
T
ω2, f

〉

, (20)

whereT denotes the transpose operation. This naturally leads us to
the following minimax problem

min
f∈C

max
ω∈B

L (f ,ω) (21)

where

L (f ,ω) =
1

2
‖f − z‖22 + τ

〈

U
T

αω, f
〉

, (22)

with ω =
[

ω
T

1 ω
T

2

]T

andUα = 0.5
[

∆T

e UT
]T

. Since the function
L (f ,ω) is strictly convex inf and concave inω we can exchange
the order of the minimum and maximum [12] and get

max
ω∈B

min
f∈C

1

2

∥

∥

∥
f −

(

z− τUT

αω

)∥

∥

∥

2

2

+
1

2
‖z‖22 −

1

2

∥

∥

∥
z− τUT

αω

∥

∥

∥

2

2
. (23)

Algorithm 2 : denoise✭③❀ ✜✮ – denoising algorithm under
Hessian-based norm regularization. For the different regular-
izers✠ ❂ ❯☛ (spectral norm) or✠ ❂ ❱ (Frobenius norm).

Input : ③,✠, ✜ ❃ ✵, ✌ ✕
�
�✠❚✠

�
�, P❈ .

Initialization: ✈✶ ❂ ✁, t✶ ❂ ✂.
Output : ❢✄ – approximate optimal solution of (16).
while stopping criterion is not satisfieddo

✦♥ ✥ P❇

✏

✈♥ ✰
✶
☎✆✠P❈

✝
③ ✞ ✜✠❚✈♥

✟✑

;

t♥✡✶ ✥
✶✡
♣
✶✡✹☛✷☞
✍ ;

✈♥✡✶ ✥ ✦♥ ✰

✏
☛☞✎✶
☛☞✒✓

✑

✭✦♥ ✞ ✦♥✎✶✮;

✔ ✥ ✔✰ ✂;
end
return P❈

✝
③ ✞ ✜✠❚✦♥✎✶

✟
;

The inner minimization problem is solved exactly by

f = PC

(

z− τUT

αω

)

, (24)

leading to the dual formulation

max
ω∈B

(

g (ω) ,
1

2

∥

∥

∥PC

(

z− τUT

αω

)

−
(

z− τUT

αω

)∥

∥

∥

2

2

+
1

2
‖z‖22 −

1

2

∥

∥

∥
z− τUT

αω

∥

∥

∥

2

2

)

, (25)

wherePC is the orthogonal projection onto the convex setC. Con-
trary to our initial problem, the dual one is smooth and its gradient

∇g (w) = τUαPC

(

z− τUT

αω

)

(26)

is well defined. To obtain (26) we use the property that the gradi-
ent of a functions (ω) = ‖ω − PC (ω)‖22 is equal to∇s (ω) =
2 (ω − PC (ω)) [10]. The solution of (17) can thus be obtained by
first solving the dual problem (25) and then using (24). Since(25)
has not a closed-form solution (Uα has not a stable inverse), we
employ Nesterov’s iterative method [13] for smooth functions and
the operatorPB that returns the orthogonal projection onto the con-
vex setB. This method exhibits a state-of-the-art convergence rate
O
(

1
n2

)

, wheren is the number of iterations. The solution of (16)
under the Hessian Frobenius-norm regularizer is obtained in exactly
the same way, using formulae (21)–(26) and replacingUα with V,
which is the discretized version ofV. Algorithm 2 describes in de-
tail the proposed denoising approach for both the spectral-and the
Frobenius-norm-based regularization.

4. EXPERIMENTS

To validate the effectiveness of the studied second-order regular-
ization framework and the efficiency of the proposed minimization
algorithm, we provide experimental results for the task of image de-
blurring. We compare our results with TV [10] for a set of four
standard test-images. In our experiments we use two different point
spead functions(psf), a uniform and a Gaussian one, both of support
9× 9. The standard deviation for the Gaussian psf isσb = 6. In Ta-
ble 2 we provide numerical results in terms of ISNR for three BSNRs
(BSNR= var[Af ] /σ2) corresponding to different levels of Gaus-
sian noise. In addition, since the intensities of the original images
are in the range of[0 1], we constrain the solutions in all cases to lie
in the convex setC = {f |fk ∈ [0 1], ∀k = 1, . . . , N}. For the sake
of fairness among comparisons, the reported results for each regular-
izer are obtained using the individualized regularizationparameterτ



Table 2. ISNR results for the three regularizers under comparison.
Image/ Uniform blur: 9× 9 Gaussian blur: 9× 9
BSNR TV Spec. Frob. TV Spec. Frob.

B
o
a
t 20 dB 3.83 3.86 3.98 3.45 3.49 3.59

25 dB 4.82 4.86 5.01 4.40 4.45 4.58

30 dB 5.99 5.96 6.13 5.54 5.52 5.67

F
l.

C
e
ll
s 20 dB 3.51 4.21 4.28 3.21 3.92 4.00

25 dB 4.32 5.06 5.15 3.95 4.72 4.81

30 dB 5.43 6.15 6.25 5.05 5.76 5.87

F
in

g
e
r
p
r
.

20 dB 5.19 6.45 6.54 5.00 6.22 6.31

25 dB 6.55 7.70 7.79 6.30 7.38 7.47

30 dB 8.07 8.85 8.92 7.82 8.49 8.56

L
e
n
a 20 dB 3.79 3.94 4.04 3.54 3.70 3.80

25 dB 4.38 4.58 4.69 4.06 4.28 4.39

30 dB 5.30 5.48 5.60 4.91 5.12 5.24

that gives the best ISNR performance. For the discretization of the
second-order differential operators, we use forward finitedifferences
with Neumann boundary conditions (reflexive boundaries). Finally,
regarding the minimization of the objective functions, we use the
proposed algorithm and the method in [10] for our second-order reg-
ularizers and TV, respectively, with a stopping criterion set to either
reaching a relative normed difference of10−5 between two succes-
sive estimates, or a maximum of 100 MFISTA iterations. We use10
inner iterations to solve the corresponding denoising problem.

With reference to the results of Table 2, the reconstructionunder
our second-order regularization framework, using either the spectral-
or the Frobenius-norm, yields quantitatively better results than TV
for the majority of images and different combinations of psfs and
noise levels. The efficacy of our approach can also be visually appre-
ciated from the representative deblurring example shown inFig. 1.
In this example, we can ascertain that while TV regularization intro-
duces staircase artifacts mixing structural details of theimage, our
solutions avoid this problem without compromising the quality of
the reconstruction.

5. CONCLUSIONS

We have proposed an efficient constrained gradient-based min-
imization algorithm for image restoration under our recently intro-
duced second-order regularization framework. We have alsodemon-
strated that our regularizers are more adapted than TV for the class
of images that consist mostly of ridges and smooth transition of in-
tensities, both from a qualitative and quantitative point of view. In
particular, our regularizers circumvent staircase effects as well fine-
scale-structure deformations that occur with TV and at the same time
can restore edges in a satisfactory way.
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