From Sample Realizations to Random Processes

Life as a (somewhat frustrated) measure non-theorist

Pumps D. Tafti
Biomedical Imaging Group
Random processes
What is a random process?
What is a random process?

Family of random variables

\{ f(t) : t \in T \}

T: parameter space (or index set)
What is a random process?

Family of random variables
\[\{ f(t) : t \in T \} \]

\(T \): parameter space (or index set)

But how are they characterized?
All we have access to in reality are finite samples.
All we have access to in reality are finite samples.

Assumption: All finite joint probability measures are given:

\[(f(t))_{t \in T_i} \iff \mu_{T_i} \text{ on } (\mathbb{R}^{T_i}, \mathcal{B}_{T_i})\]

for all finite $T_i \subset T$
All we have access to in reality are finite samples.

Assumption: All finite joint probability measures are given:

\[(f(t))_{t \in T_i} \leftrightarrow \mu_{T_i} \text{ on } (\mathbb{R}^{T_i}, \mathcal{B}_{T_i})\]

for all finite \(T_i \subset T\)

Hope: These will somehow identify a unique object, in some sense.
All we have access to in reality are finite samples.

Assumption: All finite joint probability measures are given:

\[(f(t))_{t \in T_i} \iff M_{T_i} \text{ on } (IR^{T_i}, G_{T_i})\]

for all finite \(T_i \subset T\)

Hope: These will somehow identify a unique object, in some sense.

Also: I want to compute global probabilities for the entire process.
\(\pi_{T_1} : R^T \to R^{T_1} \) [Natural projection]

Cylinder set: \(\pi_{T_1}^{-1} A \)

where \(T_1 \) finite & \(A \in \mathcal{E}_T \)
\[\pi_{T_1} : \mathbb{R}^T \rightarrow \mathbb{R}^{T_1} : f \mapsto (f(t_0), \ldots, f(t_{n-1})) \]

Natural projection

Cylinder set: \(\pi_{T_1}^{-1} A \)

where \(T_1 \) finite & \(A \in \mathcal{B}_{T_1} \)

Example: \(T_1 = \{0, 1, 2\} \)

\[A = [-1, 1] \times [0, 1] \times [-\frac{1}{2}, \frac{1}{2}] \]

\(\pi_{T_1}^{-1} A \) = set of all functions that satisfy

\[f(0) \in [-1, 1], \quad f(1) \in [0, 1], \quad f(2) \in [-\frac{1}{2}, \frac{1}{2}] \]
Precise formulation of the problem:

We have a finitely additive set function on the algebra $A = \bigcup_{T \in \mathcal{T}} \pi_i^{-1}(G_T)$ defined as

$$m(A) = m_{\pi_i}^{-1}(\pi_i^{-1}(G_T)) \text{ for } A \in \pi_i^{-1}(G_T).$$
Precise formulation of the problem:

We have a finitely additive set function on the algebra \(A = \bigcup_{T_i \in T} \pi_{T_i}^{-1}(G_{T_i}) \) defined as

\[\mu(A) = \mu_{T_i}(\pi_{T_i}^{-1}(A)) \text{ for } A \in \pi_{T_i}^{-1}(G_{T_i}). \]

Q:\ Can \(\mu \) be extended to a \(\sigma \)-additive set function (= measure) on some \(G = \sigma(A) \)?
Precise formulation of the problem:

\[Q: \text{Can } \mu \text{ be extended to a } \sigma\text{-additive set function (}= \text{measure}) \text{ on some } G = \sigma(A)? \]

\[\sigma\text{-algebra of cylinder sets} \]

Kolmogorov's Extension Theorem (Kolmogorov, 1933):

for \(G = \sigma(A) \):

Yes (if the finite measures are consistent).

\[\text{small print} \]

It's must possess an approximately compact class, which all Borel measures on \(\mathbb{R}^+ \), finite, as possible.
Consistency: Given $T_2 \subset T_1 \subset T$ with $\#T_1 < \alpha$,

$$M_{T_2}(A) = M_{T_1}(T_{T_1 \rightarrow T_2}^{-1} A) \quad \forall A \in G_{T_2}$$

where $T_{T_1 \rightarrow T_2} : R_{T_1} \rightarrow R_{T_2}$ is the natural projection $R_{T_1} \rightarrow R_{T_2}$.
Why I think unsatisfactory?
Why is this unsatisfactory?

Sets in $\mathcal{S}(\mathcal{A})$ are countably determined (σ-combinations of finitely determined cylinder sets)...

Many interesting sets are left out (cannot compute their probability):

e.g. $\{f : |f| < a\}$, $C = \{f \text{ continuous on } \mathbb{R}^3\}$
You hear often that Brownian motion is continuous a.s.

In reality, one can only show that the outer measure of $C = 1$.
You hear often that Brownian motion is continuous a.s.

In reality, one can only show that the outer measure of $C = 1$.

(But then, outer meas. of C^c also equals 1!)
You hear often that Brownian motion is continuous a.s.

In reality, one can only show that the outer measure of $C = 1$.

(But then, outer meas. of C^c also $= 1$!)

Nobody seems to care...
You hear often that Brownian motion is continuous a.s.

In reality, one can only show that the outer measure of $C = 1$.

(But then, outer meas. of C^c also $= 1$!)

Nobody seems to care...

* All generalizations, with the possible exception of this one, are false. —Kurt Gödel
You hear often that Brownian motion is continuous a.s.

In reality, one can only show that the outer measure of $C = 1$.

(But then, outer meas. of C^c also $= 1$!)

Nobody seems to care...

* All generalizations, with the possible exception of this one, are false. -Kurt Gödel
You have often that Brownian motion is continuous a.s.

In reality, one can only show that the outer measure of $C = 1$.

(But then, outer meas. of C^c also $= 1$!)

Nobody seems to care...

* All generalizations, with the possible exception of this one, are false. —Kurt Gödel

(remove the beard)
Measures on linear spaces
Random processes on linear spaces

E is linear space;

f is a random element of E^*, the algebraic dual of E

(E is a random linear functional on E);

μ is a measure on σ-algebra of Borel cylinder sets in E^* associated with f.

notation: $f(e^i) = \langle e^i, f \rangle \rightarrow \mathbb{R}$

How to characterize μ?
RECALL:

Given any linear independent vector \(\mathbf{e}_i = (e_1, \ldots, e_n) \in \mathbb{E}^n \)

Define

Projection \(\pi_i : \mathbb{E}^n \rightarrow \mathbb{R}^n : f \mapsto (f(e_1), \ldots, f(e_n)) \)

For \(A \in \text{Borel}(\mathbb{R}^n) \),

\(\pi_i A \) is a Borel cylinder set.
Consistency for linear processes: Given

\[E_i = (e_i, \ldots, e_n) \in \mathbb{E}^n \quad \text{and} \quad \mathbf{E} \in \mathbb{R}^{n \times m} \]

\[\mathbf{E}_i = (\tilde{e}_i, \ldots, \tilde{e}_m) = \mathbf{M} E_i, \]

\[\exists \mathbf{M} \in \mathbb{R}^{n \times m} \]

Equivalently:

\[f(\sum \alpha_i e_i) = \sum \alpha_i f(e_i) \]

in distribution
Zorn's lemma

\(\iff E \) has a

(= Axiom of Choice) \implies \ (Hamel) basis \(T \)

\[f \text{ is uniquely determined by } f(e), e \in T \]

Problem is reduced to Kolmogorov's thm.
cannot do much topology / analysis in
the algebraic dual E^* ...
Cannot do much topology / analysis in the algebraic dual E^* ...

Could we characterize f in the continuous (topological) dual E' instead?

(= space of continuous linear functionals on E)
cannot do much topology/analysis in
the algebraic dual E^* ...

Could we characterize f in the
continuous (topological) dual E' instead?

(= space of continuous linear functionals
on E)

enter Generalized Random Processes

of Gel'fand & Co.
Generalized Random Process:

Family of R.V.S \(\{f(e) \mid e \in E\} \)

where \(E \) is a topological vector space.

- Consistency defined as before;
- New notion: Continuity:

\[
\begin{align*}
\varepsilon, k &\to e_1 \\
\vdots &
\end{align*}
\]

\[
\begin{align*}
e_{n,k} &\to e_n \\
\varepsilon &\in E
\end{align*}
\]

\[
\Rightarrow (f(e_{n,k}), \ldots, f(e_{n,k})) \rightarrow (f(e_1), \ldots, f(e_n))
\]

in distribution

\[
M_{E_{1,k}} \rightarrow M_{E_n}
\]
Naturally, if \(\mu \) is a measure on \(E' \) (continuous dual), consistency and continuity are satisfied.

\[Q: \text{ When are 1,2 sufficient for extending a cylinder measure to a } \text{ additive one on } E'? \]

(RECALL: consistency alone was sufficient to have a measure on \(E' \).)
Minko (1958) – proof of Sel’fand’s conjecture:

For finite-dim. measures w/ \(1, 2 \), to uniquely extend to a measure on \(E' \), it is sufficient that \(E \) be nuclear.
Examples of nuclear spaces:

S: Schwartz space

D: space of compactly supp. test functions

\rightarrow random processes in S'

\rightarrow random distributions
characteristic functionals:

one way to define/construct finite dim. measures fulfilling $\{1,2\}$.

NOT TODAY...
QUESTIONS?
Note on notation:

\[A^B = \text{set of all functions } B \to A \]

Examples:

\[\mathbb{R}^\mathbb{Z} = \text{set of all real sequences} \ldots \ldots \]

\[\mathbb{R}^{\mathbb{R}} = \text{set of all functions } \mathbb{R} \to \mathbb{R} \ldots \ldots \]

\[\mathbb{R}^{[0,1]} = \text{set of all functions } [0,1] \to \mathbb{R} \]

\[0 \quad 1 \]
Probability measure:
Probability measure:

\[G : \text{set system} \subseteq \mathcal{P}(X) \]

closed under \(\cup \) \(\cap \) \(\setminus \) \(\Rightarrow \) algebra

\(\sigma \)-algebra
Probability measure:

\(G : \) set system \(\subset \mathcal{P}(\mathbb{X}) \)

closed under \(U \cap \setminus \) \(\rightarrow \) algebra

\(\sigma \)-algebra

\(m : G \rightarrow [0,1] \)

\(\text{increasing, } m(\emptyset) = 0 \)

pairwise disjoint \(A \rightarrow m(\bigcup A) = \sum_{a \in A} m(a) \)

\(A \) finite \(\rightarrow \) additivity

\(A \) countable \(\rightarrow \) \(\sigma \)-additivity