Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Detection of the Wing Structure for the Systems Biology Drosophila Fly

Spring 2011
Master Diploma
Project: 00230

00230
The wing of the Drosophila melanogaster is certainly one of the best-studied organ system, making of its simple two-dimensional structure a perfect candidate to study growth and morphogenesis. The wing imaginal discs (see Figure) are epithelial structures that give rise to the adult thorax and wing blades.

In collaboration with biologists, the contour of the wing pouch has been successfully highlighted using XFP (fluorescent protein). The very same technique is used to identify the Anterior-Posterior and Dorsal-Ventral axes.

The goal of this project is to implement an ImageJ plugin to detect 1) the contour of the wing pouch and 2) the A/P and D/V boundaries in a fully automated way. To achieve that, one strategy is to use an active contour algorithm (snake) combined with the 3D information contained in stacks of confocal images.

This project is part of the WingX initiative in collaboration with the Laboratory of Intelligent Systems.

  • Supervisors
  • Ricard Delgado-Gonzalo, ricard.delgado@epfl.ch, 021 693 51 43, BM 4.141
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Thomas Schaffter, thomas.schaffter@epfl.ch, ELE 133
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved