Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Tracking flagella undulations in microscopy images

Autumn 2014
Master Semester Project
Project: 00274

00274
Flagella are lash-like appendage that protrudes from the cell body of certain cells. The primary role of a flagellum is usually locomotion, but it also often has sensory functions thanks to its sensitivity to chemicals and temperatures in the outside environment. In many biomedical studies, it is therefore of crucial importance to be able to quantify and analyse the motion of flagella under different conditions. Cellular bodies and flagella anchors are usually easy to detect, but the flagella themselves tend to appear fainter at increasing distance from the anchor. The goal of this project is to develop a tracking algorithm to analyse the undulations of flagella. We suggest to design a spatio-temporal strategy relying on steerable filters. We propose to work on two datasets involving different organisms, namely plankton chlamydomonas and spermatozoids. As these organisms evolve in a fluid environment with known properties, fluid mechanics models could also be used in order to refine the analysis. The approach will ultimately be implemented as an ImageJ/ICY plugin freely available to the biology research community.
  • Supervisors
  • Daniel Sage, daniel.sage@epfl.ch, 021 693 51 89, BM 4.135
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Daniel Sage, daniel.sage@epfl.ch, BM 4.135, Tel: 021 693 51 89
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved