Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Modelling mycobacteria behavior in time-lapse microscopy images

Spring 2014
Master Semester Project
Master Diploma
Project: 00281

00281
Mycobacteria are non-motile rod-shaped organisms of strong interest for tuberculosis research. As growth rate, division rate and response to external perturbations seem to vary between individuals of a same colony, there is a growing need for single cell-based analysis approaches. The goal of this project is to propose a model for the behavior observed in time-lapse microscopy images of mycobacteria. Synthetic data will be produced using the model and compared with real-life biological images. Having access to an appropriate model would be highly valuable as it would allow creating ground truth for tracking and segmentation algorithms. It could be used as a basis for the design of automated analysis methods, and might as well be valuable for direct biological research. Synthetic images generated with such model would serve as a basis to test and compare an algorithm's performance versus manual annotation, an essential step in order to assess the efficiency of the method. The work is very interdisciplinary as it encompasses biology, mathematics and programming aspects: the main steps of the project will be to familiarize with the literature in order to understand the physical properties of mycobacteria growth, to design a dynamic model based on this knowledge, and to implement the model in order to generate images.
  • Supervisors
  • Virginie Uhlmann, virginie.uhlmann@epfl.ch, 021 693 1136, BM 4.142
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved