Biomedical Imaging Group
Logo EPFL
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem
Follow us on Twitter.
Join our Github.
Masquer le formulaire de recherche
Menu
BIOMEDICAL IMAGING GROUP (BIG)
Laboratoire d'imagerie biomédicale (LIB)
  1. School of Engineering STI
  2. Institute IEM
  3.  LIB
  4.  Student Projects
  • Laboratory
    • Laboratory
    • Laboratory
    • People
    • Jobs and Trainees
    • News
    • Events
    • Seminars
    • Resources (intranet)
    • Twitter
  • Research
    • Research
    • Researchs
    • Research Topics
    • Talks, Tutorials, and Reviews
  • Publications
    • Publications
    • Publications
    • Database of Publications
    • Talks, Tutorials, and Reviews
    • EPFL Infoscience
  • Code
    • Code
    • Code
    • Demos
    • Download Algorithms
    • Github
  • Teaching
    • Teaching
    • Teaching
    • Courses
    • Student projects
  • Splines
    • Teaching
    • Teaching
    • Splines Tutorials
    • Splines Art Gallery
    • Wavelets Tutorials
    • Image denoising
  • Sparsity
    • Teaching
    • Teaching
    • ERC project: FUN-SP
    • Sparse Processes - Book Preview
  • Imaging
    • Teaching
    • Teaching
    • ERC project: GlobalBioIm
    • The colored revolution of bioimaging
    • Deconvolution
    • SMLM
  • Machine Learning
    • Teaching
    • Teaching
    • One-World Seminars: Representer theorems
    • A Unifying Representer Theorem

Students Projects

Proposals  On-Going  Completed  

Maya (or Blender) plugin development for spline surface deformation

Spring 2015
Master Semester Project
Project: 00295

00295
Spline curves and surfaces (such as NURBS) are widely used in the context of shape deformation. Reasons therefor are that they are defined by a set of control points and hence, moving the location of these control points directly affects the geometry of the corresponding shape. We have designed spline functions that have useful properties (e.g. compactly supported, interpolatory, refinable, etc.) for parametric curve and surface representation. We also have mathematical formulations describing continuous shape deformation based on splines. A simple example is the use of specific spline basis functions in order to continuously deform the cylinder on the right into an exact sphere. Traditionally such tasks are performed using NURBS. However, our basis functions have some advantages over NURBS that we would like to exploit in this project. In this project we aim at developing a plugin for Audodesk Maya (or Blender) that implements the continuous deformation of such spline shapes resulting in an animation. The student should have a computer science background or be familiar with the Maya API. He or she should have an interest in computer graphics. Additional knowledge on image processing or splines would be beneficial.
  • Supervisors
  • Daniel Schmitter, daniel.schmitter@epfl.ch, 21 693 5136, BM 4.138
  • Michael Unser, michael.unser@epfl.ch, 021 693 51 75, BM 4.136
  • Laboratory
  • Research
  • Publications
  • Code
  • Teaching
    • Courses
    • Student projects
Logo EPFL, Ecole polytechnique fédérale de Lausanne
Emergencies: +41 21 693 3000 Services and resources Contact Map Webmaster email

Follow EPFL on social media

Follow us on Facebook. Follow us on Twitter. Follow us on Instagram. Follow us on Youtube. Follow us on LinkedIn.
Accessibility Disclaimer Privacy policy

© 2023 EPFL, all rights reserved